mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
148 lines
7.7 KiB
Python
148 lines
7.7 KiB
Python
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# This file was automatically generated from examples/modular-transformers/modular_new_model.py.
|
|
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
# the file from the modular. If any change should be done, please apply the change to the
|
|
# modular_new_model.py file directly. One of our CI enforces this.
|
|
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
# Example where we only want to overwrite the defaults of an init
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
|
|
|
|
class NewModelConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`NewModelModel`]. It is used to instantiate an NewModel
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
|
defaults will yield a similar configuration to that of the NewModel-7B.
|
|
e.g. [google/new_model-7b](https://huggingface.co/google/new_model-7b)
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 256000):
|
|
Vocabulary size of the NewModel model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`NewModelModel`]
|
|
hidden_size (`int`, *optional*, defaults to 3072):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 24576):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 28):
|
|
Number of hidden layers in the Transformer decoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads for each attention layer in the Transformer decoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 16):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details, check out [this
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
|
|
`num_attention_heads`.
|
|
head_dim (`int`, *optional*, defaults to 256):
|
|
The attention head dimension.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
|
The legacy activation function. It is overwritten by the `hidden_activation`.
|
|
hidden_activation (`str` or `function`, *optional*):
|
|
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
|
|
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
|
|
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
|
The maximum sequence length that this model might ever be used with.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*, defaults to 0):
|
|
Padding token id.
|
|
eos_token_id (`int`, *optional*, defaults to 1):
|
|
End of stream token id.
|
|
bos_token_id (`int`, *optional*, defaults to 2):
|
|
Beginning of stream token id.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
|
Whether to tie weight embeddings
|
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
|
The base period of the RoPE embeddings.
|
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
```python
|
|
>>> from transformers import NewModelModel, NewModelConfig
|
|
>>> # Initializing a NewModel new_model-7b style configuration
|
|
>>> configuration = NewModelConfig()
|
|
>>> # Initializing a model from the new_model-7b style configuration
|
|
>>> model = NewModelModel(configuration)
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "new_model"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
base_model_tp_plan = {
|
|
"layers.*.self_attn.q_proj": "colwise",
|
|
"layers.*.self_attn.k_proj": "colwise",
|
|
"layers.*.self_attn.v_proj": "colwise",
|
|
"layers.*.self_attn.o_proj": "rowwise",
|
|
"layers.*.mlp.gate_proj": "colwise",
|
|
"layers.*.mlp.up_proj": "colwise",
|
|
"layers.*.mlp.down_proj": "rowwise",
|
|
}
|
|
base_model_pp_plan = {
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
|
"norm": (["hidden_states"], ["hidden_states"]),
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=256030,
|
|
hidden_size=64,
|
|
intermediate_size=90,
|
|
num_hidden_layers=28,
|
|
num_attention_heads=16,
|
|
num_key_value_heads=16,
|
|
head_dim=256,
|
|
hidden_act="gelu_pytorch_tanh",
|
|
hidden_activation=None,
|
|
max_position_embeddings=1500,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-6,
|
|
use_cache=True,
|
|
pad_token_id=0,
|
|
eos_token_id=1,
|
|
bos_token_id=2,
|
|
tie_word_embeddings=True,
|
|
rope_theta=10000.0,
|
|
attention_bias=False,
|
|
attention_dropout=0.0,
|
|
**kwargs,
|
|
):
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.head_dim = head_dim
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.hidden_activation = hidden_activation
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_bias = attention_bias
|
|
self.attention_dropout = attention_dropout
|
|
|
|
@property
|
|
def num_heads(self):
|
|
return self.num_attention_heads
|