transformers/pytorch_transformers/tests/tokenization_roberta_test.py
2019-08-30 13:22:43 +02:00

98 lines
3.9 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import json
import unittest
from io import open
from pytorch_transformers.tokenization_roberta import RobertaTokenizer, VOCAB_FILES_NAMES
from .tokenization_tests_commons import CommonTestCases
class RobertaTokenizationTest(CommonTestCases.CommonTokenizerTester):
tokenizer_class = RobertaTokenizer
def setUp(self):
super(RobertaTokenizationTest, self).setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n",
"\u0120", "\u0120l", "\u0120n",
"\u0120lo", "\u0120low", "er",
"\u0120lowest", "\u0120newer", "\u0120wider", "<unk>"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self):
return RobertaTokenizer.from_pretrained(self.tmpdirname, **self.special_tokens_map)
def get_input_output_texts(self):
input_text = u"lower newer"
output_text = u" lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = RobertaTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "lower newer"
bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(
tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def roberta_dict_integration_testing(self):
tokenizer = self.get_tokenizer()
self.assertListEqual(
tokenizer.encode('Hello world!'),
[0, 31414, 232, 328, 2]
)
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418'),
[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]
)
def test_sequence_builders(self):
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
text = tokenizer.encode("sequence builders")
text_2 = tokenizer.encode("multi-sequence build")
encoded_text_from_decode = tokenizer.encode("sequence builders", add_special_tokens=True)
encoded_pair_from_decode = tokenizer.encode("sequence builders", "multi-sequence build", add_special_tokens=True)
encoded_sentence = tokenizer.add_special_tokens_single_sentence(text)
encoded_pair = tokenizer.add_special_tokens_sentences_pair(text, text_2)
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
if __name__ == '__main__':
unittest.main()