transformers/docs/source/model_doc/transformerxl.rst
Sylvain Gugger 3323146e90
Models doc (#7345)
* Clean up model documentation

* Formatting

* Preparation work

* Long lines

* Main work on rst files

* Cleanup all config files

* Syntax fix

* Clean all tokenizers

* Work on first models

* Models beginning

* FaluBERT

* All PyTorch models

* All models

* Long lines again

* Fixes

* More fixes

* Update docs/source/model_doc/bert.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Update docs/source/model_doc/electra.rst

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* Last fixes

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2020-09-23 13:20:45 -04:00

98 lines
4.2 KiB
ReStructuredText

Transformer XL
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Transformer-XL model was proposed in `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
<https://arxiv.org/abs/1901.02860>`__ by Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan
Salakhutdinov. It's a causal (uni-directional) transformer with relative positioning (sinusoïdal) embeddings which can
reuse previously computed hidden-states to attend to longer context (memory). This model also uses adaptive softmax
inputs and outputs (tied).
The abstract from the paper is the following:
*Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the
setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency
beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and
a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves
the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and
450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up
to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results
of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on
Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably
coherent, novel text articles with thousands of tokens.*
Tips:
- Transformer-XL uses relative sinusoidal positional embeddings. Padding can be done on the left or on the right.
The original implementation trains on SQuAD with padding on the left, therefore the padding defaults are set to left.
- Transformer-XL is one of the few models that has no sequence length limit.
The original code can be found `here <https://github.com/kimiyoung/transformer-xl>`__.
TransfoXLConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLConfig
:members:
TransfoXLTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLTokenizer
:members: save_vocabulary
TransfoXLTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLTokenizerFast
:members:
TransfoXL specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.modeling_transfo_xl.TransfoXLModelOutput
:members:
.. autoclass:: transformers.modeling_transfo_xl.TransfoXLLMHeadModelOutput
:members:
.. autoclass:: transformers.modeling_tf_transfo_xl.TFTransfoXLModelOutput
:members:
.. autoclass:: transformers.modeling_tf_transfo_xl.TFTransfoXLLMHeadModelOutput
:members:
TransfoXLModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLModel
:members: forward
TransfoXLLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TransfoXLLMHeadModel
:members: forward
TFTransfoXLModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTransfoXLModel
:members: call
TFTransfoXLLMHeadModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.TFTransfoXLLMHeadModel
:members: call