transformers/tests/models/seamless_m4t/test_tokenization_seamless_m4t.py
Yoach Lacombe cb45f71c4d
Add Seamless M4T model (#25693)
* first raw commit

* still POC

* tentative convert script

* almost working speech encoder conversion scripts

* intermediate code for encoder/decoders

* add modeling code

* first version of speech encoder

* make style

* add new adapter layer architecture

* add adapter block

* add first tentative config

* add working speech encoder conversion

* base model convert works now

* make style

* remove unnecessary classes

* remove unecessary functions

* add modeling code speech encoder

* rework logics

* forward pass of sub components work

* add modeling codes

* some config modifs and modeling code modifs

* save WIP

* new edits

* same output speech encoder

* correct attention mask

* correct attention mask

* fix generation

* new generation logics

* erase comments

* make style

* fix typo

* add some descriptions

* new state

* clean imports

* add tests

* make style

* make beam search and num_return_sequences>1 works

* correct edge case issue

* correct SeamlessM4TConformerSamePadLayer copied from

* replace ACT2FN relu by nn.relu

* remove unecessary return variable

* move back a class

* change name conformer_attention_mask ->conv_attention_mask

* better nit code

* add some Copied from statements

* small nits

* small nit in dict.get

* rename t2u model -> conditionalgeneration

* ongoing refactoring of structure

* update models architecture

* remove SeamlessM4TMultiModal classes

* add tests

* adapt tests

* some non-working code for vocoder

* add seamlessM4T vocoder

* remove buggy line

* fix some hifigan related bugs

* remove hifigan specifc config

* change

* add WIP tokenization

* add seamlessM4T working tokenzier

* update tokenization

* add tentative feature extractor

* Update converting script

* update working FE

* refactor input_values -> input_features

* update FE

* changes in generation, tokenizer and modeling

* make style and add t2u_decoder_input_ids

* add intermediate outputs for ToSpeech models

* add vocoder to speech models

* update valueerror

* update FE with languages

* add vocoder convert

* update config docstrings and names

* update generation code and configuration

* remove todos and update config.pad_token_id to generation_config.pad_token_id

* move block vocoder

* remove unecessary code and uniformize tospeech code

* add feature extractor import

* make style and fix some copies from

* correct consistency + make fix-copies

* add processor code

* remove comments

* add fast tokenizer support

* correct pad_token_id in M4TModel

* correct config

* update tests and codes  + make style

* make some suggested correstion - correct comments and change naming

* rename some attributes

* rename some attributes

* remove unecessary sequential

* remove option to use dur predictor

* nit

* refactor hifigan

* replace normalize_mean and normalize_var with do_normalize + save lang ids to generation config

* add tests

* change tgt_lang logic

* update generation ToSpeech

* add support import SeamlessM4TProcessor

* fix generate

* make tests

* update integration tests, add option to only return text and update tokenizer fast

* fix wrong function call

* update import and convert script

* update integration tests + update repo id

* correct paths and add first test

* update how new attention masks are computed

* update tests

* take first care of batching in vocoder code

* add batching with the vocoder

* add waveform lengths to model outputs

* make style

* add generate kwargs + forward kwargs of M4TModel

* add docstrings forward methods

* reformate docstrings

* add docstrings t2u model

* add another round of modeling docstrings + reformate speaker_id -> spkr_id

* make style

* fix check_repo

* make style

* add seamlessm4t to toctree

* correct check_config_attributes

* write config docstrings + some modifs

* make style

* add docstrings tokenizer

* add docstrings to processor, fe and tokenizers

* make style

* write first version of model docs

* fix FE + correct FE test

* fix tokenizer + add correct integration tests

* fix most tokenization tests

* make style

* correct most processor test

* add generation tests and fix num_return_sequences > 1

* correct integration tests -still one left

* make style

* correct position embedding

* change numbeams to 1

* refactor some modeling code and correct one test

* make style

* correct typo

* refactor intermediate fnn

* refactor feedforward conformer

* make style

* remove comments

* make style

* fix tokenizer tests

* make style

* correct processor tests

* make style

* correct S2TT integration

* Apply suggestions from Sanchit code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* correct typo

* replace torch.nn->nn + make style

* change Output naming (waveforms -> waveform) and ordering

* nit renaming and formating

* remove return None when not necessary

* refactor SeamlessM4TConformerFeedForward

* nit typo

* remove almost copied from comments

* add a copied from comment and remove an unecessary dropout

* remove inputs_embeds from speechencoder

* remove backward compatibiliy function

* reformate class docstrings for a few components

* remove unecessary methods

* split over 2 lines smthg hard to read

* make style

* replace two steps offset by one step as suggested

* nice typo

* move warnings

* remove useless lines from processor

* make generation non-standard test more robusts

* remove torch.inference_mode from tests

* split integration tests

* enrich md

* rename control_symbol_vocoder_offset->vocoder_offset

* clean convert file

* remove tgt_lang and src_lang from FE

* change generate docstring of ToText models

* update generate docstring of tospeech models

* unify how to deal withtext_decoder_input_ids

* add default spkr_id

* unify tgt_lang for t2u_model

* simplify tgt_lang verification

* remove a todo

* change config docstring

* make style

* simplify t2u_tgt_lang_id

* make style

* enrich/correct comments

* enrich .md

* correct typo in docstrings

* add torchaudio dependency

* update tokenizer

* make style and fix copies

* modify SeamlessM4TConverter with new tokenizer behaviour

* make style

* correct small typo docs

* fix import

* update docs and add requirement to tests

* add convert_fairseq2_to_hf in utils/not_doctested.txt

* update FE

* fix imports and make style

* remove torchaudio in FE test

* add seamless_m4t.md to utils/not_doctested.txt

* nits and change the way docstring dataset is loaded

* move checkpoints from ylacombe/ to facebook/ orga

* refactor warning/error to be in the 119 line width limit

* round overly precised floats

* add stereo audio behaviour

* refactor .md and make style

* enrich docs with more precised architecture description

* readd undocumented models

* make fix-copies

* apply some suggestions

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* correct bug from previous commit

* refactor a parameter allowing to clean the code + some small nits

* clean tokenizer

* make style and fix

* make style

* clean tokenizers arguments

* add precisions for some tests

* move docs from not_tested to slow

* modify tokenizer according to last comments

* add copied from statements in tests

* correct convert script

* correct parameter docstring style

* correct tokenization

* correct multi gpus

* make style

* clean modeling code

* make style

* add copied from statements

* add copied statements

* add support with ASR pipeline

* remove file added inadvertently

* fix docstrings seamlessM4TModel

* add seamlessM4TConfig to OBJECTS_TO_IGNORE due of unconventional markdown

* add seamlessm4t to assisted generation ignored models

---------

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
2023-10-23 14:49:48 +02:00

673 lines
30 KiB
Python

# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
PreTrainedTokenizerFast,
SeamlessM4TTokenizer,
SeamlessM4TTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right
EN_CODE = 256047
RO_CODE = 256145
SMALL_TRAINING_CORPUS = [
["This is the first sentence.", "This is the second one."],
["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],
]
@require_sentencepiece
@require_tokenizers
class SeamlessM4TTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = SeamlessM4TTokenizer
rust_tokenizer_class = SeamlessM4TTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = True
from_pretrained_kwargs = {}
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)
def test_full_tokenizer(self):
tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]
],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
def test_maximum_encoding_length_single_input(self):
tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
sequence = tokenizer.encode(seq_0, add_special_tokens=False)
total_length = len(sequence)
self.assertGreater(
total_length, 4, "Issue with the testing sequence, please update it, it's too short"
)
# Test with max model input length
model_max_length = tokenizer.model_max_length
self.assertEqual(model_max_length, 100)
seq_1 = seq_0 * model_max_length
sequence1 = tokenizer(seq_1, add_special_tokens=False)
total_length1 = len(sequence1["input_ids"])
self.assertGreater(
total_length1,
model_max_length,
"Issue with the testing sequence, please update it, it's too short",
)
# Simple
padding_strategies = (
[False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
)
for padding_state in padding_strategies:
with self.subTest(f"Padding: {padding_state}"):
for truncation_state in [True, "longest_first", "only_first"]:
with self.subTest(f"Truncation: {truncation_state}"):
output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
self.assertEqual(len(output["input_ids"]), model_max_length)
output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
self.assertEqual(len(output["input_ids"][0]), model_max_length)
# Simple with no truncation
# Reset warnings
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer(seq_1, padding=padding_state, truncation=False)
self.assertNotEqual(len(output["input_ids"]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
tokenizer.deprecation_warnings = {}
with self.assertLogs("transformers", level="WARNING") as cm:
output = tokenizer([seq_1], padding=padding_state, truncation=False)
self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
self.assertEqual(len(cm.records), 1)
self.assertTrue(
cm.records[0].message.startswith(
"Token indices sequence length is longer than the specified maximum sequence length"
" for this model"
)
)
# Overflowing tokens
stride = 2
# modify padding because it's activated by default in seamlessM4T
information = tokenizer(
seq_0,
max_length=total_length - 2,
add_special_tokens=False,
stride=stride,
truncation="longest_first",
return_overflowing_tokens=True,
padding=False,
# add_prefix_space=False,
)
# Overflowing tokens are handled quite differently in slow and fast tokenizers
if isinstance(tokenizer, PreTrainedTokenizerFast):
truncated_sequence = information["input_ids"][0]
overflowing_tokens = information["input_ids"][1]
self.assertEqual(len(information["input_ids"]), 2)
self.assertEqual(len(truncated_sequence), total_length - 2)
self.assertEqual(truncated_sequence, sequence[:-2])
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
else:
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
self.assertEqual(len(truncated_sequence), total_length - 2)
self.assertEqual(truncated_sequence, sequence[:-2])
self.assertEqual(len(overflowing_tokens), 2 + stride)
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
@unittest.skip("By defaults, uses pad_to_multiple_of which breaks the test")
def test_maximum_encoding_length_pair_input(self):
pass
def test_padding_to_multiple_of(self):
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
if tokenizer.pad_token is None:
self.skipTest("No padding token.")
else:
empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
for key, value in empty_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# default to padding=True so need to precise which padding is called
normal_tokens = tokenizer("This", pad_to_multiple_of=8, padding=False)
for key, value in normal_tokens.items():
self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# Should also work with truncation
normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
for key, value in normal_tokens.items():
self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
# truncation to something which is not a multiple of pad_to_multiple_of raises an error
self.assertRaises(
ValueError,
tokenizer.__call__,
"This",
padding=True,
truncation=True,
max_length=12,
pad_to_multiple_of=8,
)
@require_torch
def test_prepare_seq2seq_batch(self):
if not self.test_seq2seq:
return
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
tgt_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
try:
batch = tokenizer.prepare_seq2seq_batch(
src_texts=src_text,
tgt_texts=tgt_text,
max_length=3,
max_target_length=10,
return_tensors="pt",
src_lang="eng",
tgt_lang="ron",
pad_to_multiple_of=None,
)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.labels.shape[1], 10)
# TODO: not working for tgt_text
# max_target_length will default to max_length if not specified
batch = tokenizer.prepare_seq2seq_batch(
src_texts=src_text,
tgt_texts=tgt_text,
max_length=4,
return_tensors="pt",
pad_to_multiple_of=None,
)
self.assertEqual(batch.input_ids.shape[1], 4)
self.assertEqual(batch.labels.shape[1], 4)
batch_encoder_only = tokenizer.prepare_seq2seq_batch(
src_texts=src_text,
max_length=4,
max_target_length=10,
return_tensors="pt",
pad_to_multiple_of=None,
)
self.assertEqual(batch_encoder_only.input_ids.shape[1], 4)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 4)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
# Copied from tests.models.nllb.test_tokenization_nllb.NllbTokenizationTest.test_special_tokens_initialization
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@unittest.skip(
"encode_plus and batch_encode_plus are deprecated and __call__ do some processing, so we expect different results."
)
def test_call(self):
pass
def test_training_new_tokenizer(self):
# This feature only exists for fast tokenizers
if not self.test_rust_tokenizer:
return
tokenizer = self.get_rust_tokenizer()
new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)
# Test we can use the new tokenizer with something not seen during training
inputs = new_tokenizer(["This is the first sentence", "This sentence is different 🤗."])
self.assertEqual(len(inputs["input_ids"]), 2)
decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
expected_result = "This is the first sentence"
if tokenizer.backend_tokenizer.normalizer is not None:
expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
self.assertEqual(expected_result, decoded_input)
# We check that the parameters of the tokenizer remained the same
# Check we have the same number of added_tokens for both pair and non-pair inputs.
# make sure it has the same prefix tokens first
new_tokenizer.tgt_lang = tokenizer.tgt_lang
tokenizer.tgt_lang = tokenizer.tgt_lang
self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))
# Check we have the correct max_length for both pair and non-pair inputs.
self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)
# Assert the set of special tokens match as we didn't ask to change them
self.assertSequenceEqual(
tokenizer.all_special_tokens_extended,
new_tokenizer.all_special_tokens_extended,
)
self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)
@unittest.skip("Fails because of the hack of adding <unk> in _tokenize")
def test_pickle_subword_regularization_tokenizer(self):
pass
@unittest.skip("Fails because of the hack of adding <unk> in _tokenize")
def test_subword_regularization_tokenizer(self):
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class SeamlessM4TDistilledIntegrationTest(unittest.TestCase):
checkpoint_name = "facebook/hf-seamless-m4t-medium"
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
tgt_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
# fmt: off
expected_src_tokens = [256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 3]
# fmt: on
@classmethod
def setUpClass(cls):
cls.tokenizer: SeamlessM4TTokenizer = SeamlessM4TTokenizer.from_pretrained(
cls.checkpoint_name, src_lang="eng", tgt_lang="ron"
)
# cls.pad_token_id = 1
return cls
def test_language_codes(self):
self.assertEqual(self.tokenizer.convert_tokens_to_ids("__ace_Latn__"), 256002)
self.assertEqual(self.tokenizer.convert_tokens_to_ids("__shn__"), 256152)
self.assertEqual(self.tokenizer.convert_tokens_to_ids("__eng__"), 256047)
self.assertEqual(self.tokenizer.convert_tokens_to_ids("__fra__"), 256057)
self.assertEqual(self.tokenizer.convert_tokens_to_ids("__quy__"), 256144)
def test_tokenizer_tgt_lang(self):
ids = self.tokenizer(self.src_text, src_lang="fra").input_ids[0]
self.assertListEqual(self.expected_src_tokens[1:], ids[1 : len(self.expected_src_tokens)])
self.assertEqual(256057, ids[0])
rest_ids = ids[len(self.expected_src_tokens) :]
self.assertListEqual([0] * len(rest_ids), rest_ids)
ids = self.tokenizer(self.src_text, src_lang="__shn__").input_ids[0]
self.assertListEqual(self.expected_src_tokens[1:], ids[1 : len(self.expected_src_tokens)])
self.assertEqual(256152, ids[0])
# Copied from tests.models.nllb.test_tokenization_nllb.NllbDistilledIntegrationTest.test_enro_tokenizer_decode_ignores_language_codes
def test_enro_tokenizer_decode_ignores_language_codes(self):
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
# fmt: off
generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047]
# fmt: on
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_romanian)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_enro_tokenizer_truncation(self):
src_text = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0], str)
desired_max_length = 10
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
self.assertEqual(ids[-1], 3)
self.assertEqual(ids[0], EN_CODE)
self.assertEqual(len(ids), desired_max_length)
# Copied from tests.models.nllb.test_tokenization_nllb.NllbDistilledIntegrationTest.test_special_tokens_unaffacted_by_save_load with fairseq_tokens_to_ids->additional_special_tokens, Nllb->SeamlessM4T, Dict->List
def test_special_tokens_unaffacted_by_save_load(self):
tmpdirname = tempfile.mkdtemp()
original_special_tokens = self.tokenizer.additional_special_tokens
self.tokenizer.save_pretrained(tmpdirname)
new_tok = SeamlessM4TTokenizer.from_pretrained(tmpdirname)
self.assertListEqual(new_tok.additional_special_tokens, original_special_tokens)
@require_torch
def test_enro_tokenizer_prepare_batch(self):
batch = self.tokenizer(
self.src_text,
text_target=self.tgt_text,
padding=True,
truncation=True,
max_length=len(self.expected_src_tokens),
pad_to_multiple_of=None,
return_tensors="pt",
)
batch["decoder_input_ids"] = shift_tokens_right(
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.convert_tokens_to_ids("__ron__")
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 15), batch.input_ids.shape)
self.assertEqual((2, 15), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens, result)
self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
def test_seq2seq_max_length(self):
batch = self.tokenizer(
self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt", pad_to_multiple_of=None
)
targets = self.tokenizer(
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
)
labels = targets["input_ids"]
batch["decoder_input_ids"] = shift_tokens_right(
labels,
self.tokenizer.pad_token_id,
decoder_start_token_id=self.tokenizer.convert_tokens_to_ids(self.tokenizer.tgt_lang),
)
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
@require_torch
def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs(
"A test", return_tensors="pt", src_lang="eng", tgt_lang="fra"
)
self.assertEqual(
nested_simplify(inputs),
{
# A, test, EOS, en_XX
"input_ids": [[256047, 70, 7356, 3]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 256057,
},
)
@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
@classmethod
def setUpClass(cls):
tokenizer = SeamlessM4TTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False)
tokenizer.add_special_tokens({"additional_special_tokens": [AddedToken("<s>", rstrip=False, lstrip=False)]})
cls.tokenizer = tokenizer
return cls
def test_add_dummy_prefix(self):
# make sure `'▁'` is prepended, and outputs match sp_model's
# `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
input_ids = self.tokenizer.encode(". Hello")
self.assertEqual(input_ids, [3, 1, 8, 5, 157, 87, 21, 3])
sp_encode = self.tokenizer.sp_model.encode(". Hello")
# [bos, lang_id, _] + offset_sp_encode
self.assertEqual(input_ids[:-1], [3, 1, 8] + [i + self.tokenizer.fairseq_offset for i in sp_encode])
tokens = self.tokenizer.tokenize(". Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
tokens = self.tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))
tokens = self.tokenizer.tokenize(" ")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode(" ", out_type=str))
tokens = self.tokenizer.tokenize("")
self.assertEqual(tokens, [])
self.assertEqual(tokens, self.tokenizer.sp_model.encode("", out_type=str))
def test_remove_extra_whitespaces(self):
# make sure the extra spaces are eaten. Since the sample vocab does not have
# `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False
input_ids = self.tokenizer.encode(" . Hello")
self.assertEqual(input_ids, [3, 1, 8, 5, 157, 87, 21, 3])
sp_encode = self.tokenizer.sp_model.encode(" . Hello")
self.assertEqual([i - self.tokenizer.fairseq_offset for i in input_ids[2:-1]], [7] + sp_encode)
tokens = self.tokenizer.tokenize(" . Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
# `'▁'` is also a whitespace
input_ids = self.tokenizer.encode("▁He is not")
self.assertEqual(input_ids, [3, 1, 157, 47, 45, 3])
tokens = self.tokenizer.tokenize("▁He is not")
sp_encode = [
self.tokenizer.sp_model.piece_to_id("▁He"),
self.tokenizer.sp_model.piece_to_id("▁is"),
self.tokenizer.sp_model.piece_to_id("▁not"),
]
self.assertEqual([i - self.tokenizer.fairseq_offset for i in input_ids[2:-1]], sp_encode)
self.assertEqual(tokens, ["▁He", "▁is", "▁not"]) # no extra space added
input_ids = self.tokenizer.encode("▁He is not<s> ▁He")
self.assertEqual(input_ids, [3, 1, 157, 47, 45, 2, 157, 3])
tokens = self.tokenizer.tokenize("▁He is not<s> ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"]) # spaces are eaten by spm + our strip
# make sure that the output after the extra id is the same as if
# extra_id was not there
input_ids = self.tokenizer.encode("▁He is not ▁He")
self.assertEqual(input_ids, [3, 1, 157, 47, 45, 157, 3])
tokens = self.tokenizer.tokenize("▁He is not ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"]) # spaces are eaten by spm even if not start
def test_character_after_special_token(self):
# Make sure that `tokenizer.tokenize` is similar to
# adding the equivalent special token to the vocab
input_ids = self.tokenizer.encode("Hey <s>I")
self.assertEqual(input_ids, [3, 1, 157, 31, 2, 101, 3])
sp_encode = self.tokenizer.sp_model.encode("Hey .I")
# the last token besides eos should be 100 offset
self.assertEqual(input_ids[-2] - self.tokenizer.fairseq_offset, sp_encode[-1])
tokens = self.tokenizer.tokenize("<s>I")
self.assertEqual(tokens, ["<s>", "I"])
input_ids = self.tokenizer.encode("Hello, <s>,")
self.assertEqual(input_ids, [3, 1, 157, 87, 21, 4, 2, 4, 3])
tokens = self.tokenizer.tokenize("Hello, <s>,")
self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","])
def test_special_tokens_strip(self):
input_ids = self.tokenizer.encode(" <s> ,")
self.assertEqual(input_ids, [3, 1, 2, 8, 4, 3])
tokens = self.tokenizer.tokenize(" <s> ,")
# spaces are eaten by rstrip / lstrip + spm sp_model.encode(" ") = []
self.assertEqual(tokens, ["<s>", "", ","])
input_ids = self.tokenizer.encode("No <s> ▁He")
self.assertEqual(input_ids, [3, 1, 285, 2, 157, 3])
tokens = self.tokenizer.tokenize("No <s> ▁He")
self.assertEqual(tokens, ["▁No", "<s>", "▁He"]) # spaces are eaten by rstrip / lstrip