mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* fix * fix * oups forgot style --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
192 lines
8.1 KiB
Python
192 lines
8.1 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from parameterized import parameterized
|
|
|
|
from transformers import GemmaTokenizerFast, SiglipImageProcessorFast, is_speech_available
|
|
from transformers.testing_utils import require_sentencepiece, require_torch, require_torchaudio, require_vision
|
|
|
|
from .test_feature_extraction_gemma3n import floats_list
|
|
|
|
|
|
if is_speech_available():
|
|
from transformers.models.gemma3n import Gemma3nAudioFeatureExtractor, Gemma3nProcessor
|
|
|
|
|
|
@require_torch
|
|
@require_torchaudio
|
|
@require_vision
|
|
@require_sentencepiece
|
|
class Gemma3nProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
# TODO: update to google?
|
|
self.model_id = "hf-internal-testing/namespace-google-repo_name-gemma-3n-E4B-it"
|
|
self.tmpdirname = tempfile.mkdtemp(suffix="gemma3n")
|
|
self.maxDiff = None
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return GemmaTokenizerFast.from_pretrained(self.model_id, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs):
|
|
return Gemma3nAudioFeatureExtractor.from_pretrained(self.model_id, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return SiglipImageProcessorFast.from_pretrained(self.model_id, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
# NOTE: feature_extractor and image_processor both use the same filename, preprocessor_config.json, when saved to
|
|
# disk, but the files are overwritten by processor.save_pretrained(). This test does not attempt to address
|
|
# this potential issue, and as such, does not guarantee content accuracy.
|
|
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
processor.save_pretrained(self.tmpdirname)
|
|
processor = Gemma3nProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertIsInstance(processor.tokenizer, GemmaTokenizerFast)
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
|
|
|
|
# `disable_grouping` is a new attribute that got added on main while gemma3n was being released - so was
|
|
# not part of the saved processor
|
|
del processor.feature_extractor.disable_grouping
|
|
self.assertIsInstance(processor.feature_extractor, Gemma3nAudioFeatureExtractor)
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
tokenizer = self.get_tokenizer()
|
|
feature_extractor = self.get_feature_extractor()
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS-BOS)", eos_token="(EOS-EOS)")
|
|
feature_extractor_add_kwargs = self.get_feature_extractor(dither=5.0, padding_value=1.0)
|
|
|
|
processor = Gemma3nProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS-BOS)", eos_token="(EOS-EOS)", dither=5.0, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, GemmaTokenizerFast)
|
|
|
|
# `disable_grouping` is a new attribute that got added on main while gemma3n was being released - so was
|
|
# not part of the saved processor
|
|
del processor.feature_extractor.disable_grouping
|
|
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.feature_extractor, Gemma3nAudioFeatureExtractor)
|
|
|
|
@parameterized.expand([256, 512, 768, 1024])
|
|
def test_image_processor(self, image_size: int):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
raw_image = np.random.randint(0, 256, size=(image_size, image_size, 3), dtype=np.uint8)
|
|
input_image_processor = image_processor(raw_image, return_tensors="pt")
|
|
input_processor = processor(text="Describe:", images=raw_image, return_tensors="pt")
|
|
|
|
for key in input_image_processor.keys():
|
|
self.assertAlmostEqual(input_image_processor[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
if "pixel_values" in key:
|
|
# NOTE: all images should be re-scaled to 768x768
|
|
self.assertEqual(input_image_processor[key].shape, (1, 3, 768, 768))
|
|
self.assertEqual(input_processor[key].shape, (1, 3, 768, 768))
|
|
|
|
def test_audio_feature_extractor(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
raw_speech = floats_list((3, 1000))
|
|
input_feat_extract = feature_extractor(raw_speech, return_tensors="pt")
|
|
input_processor = processor(text="Transcribe:", audio=raw_speech, return_tensors="pt")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
input_str = "This is a test string"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key][0])
|
|
|
|
def test_tokenizer_decode(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|
|
|
|
def test_model_input_names(self):
|
|
feature_extractor = self.get_feature_extractor()
|
|
tokenizer = self.get_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
processor = Gemma3nProcessor(
|
|
tokenizer=tokenizer, feature_extractor=feature_extractor, image_processor=image_processor
|
|
)
|
|
|
|
for key in feature_extractor.model_input_names:
|
|
self.assertIn(
|
|
key,
|
|
processor.model_input_names,
|
|
)
|
|
|
|
for key in image_processor.model_input_names:
|
|
self.assertIn(
|
|
key,
|
|
processor.model_input_names,
|
|
)
|