mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00

* Define new output dataclasses for greedy generation * Add output_[...] flags in greedy generation methods Added output_attentions, output_hidden_states, output_scores flags in generate and greedy_search methods in GenerationMixin. * [WIP] Implement logic and tests for output flags in generation * Update GreedySearchOutput classes & docstring * Implement greedy search output accumulation logic Update greedy_search unittests Fix generate method return value docstring Properly init flags with the default config * Update configuration to add output_scores flag * Fix test_generation_utils Sort imports and fix isinstance tests for GreedySearchOutputs * Fix typo in generation_utils * Add return_dict_in_generate for backwards compatibility * Add return_dict_in_generate flag in config * Fix tyPo in configuration * Fix handling of attentions and hidden_states flags * Make style & quality * first attempt attentions * some corrections * improve tests * special models requires special test * disable xlm test for now * clean tests * fix for tf * isort * Add output dataclasses for other generation methods * Add logic to return dict in sample generation * Complete test for sample generation - Pass output_attentions and output_hidden_states flags to encoder in encoder-decoder models - Fix import satements order in test_generation_utils file * Add logic to return dict in sample generation - Refactor tests to avoid using self.assertTrue, which provides scarce information when the test fails - Add tests for the three beam_search methods: vanilla, sample and grouped * Style doc * Fix copy-paste error in generation tests * Rename logits to scores and refactor * Refactor group_beam_search for consistency * make style * add sequences_scores * fix all tests * add docs * fix beam search finalize test * correct docstring * clean some files * Made suggested changes to the documentation * Style doc ? * Style doc using the Python util * Update src/transformers/generation_utils.py * fix empty lines * fix all test Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
736 lines
24 KiB
Python
736 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import random
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
|
|
|
|
from .test_configuration_common import ConfigTester
|
|
from .test_generation_utils import GenerationTesterMixin
|
|
from .test_modeling_common import ModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import TransfoXLConfig, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel
|
|
from transformers.models.transfo_xl.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
|
|
|
|
|
|
class TransfoXLModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 14
|
|
self.seq_length = 7
|
|
self.mem_len = 30
|
|
self.key_length = self.seq_length + self.mem_len
|
|
self.clamp_len = 15
|
|
self.is_training = False
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.cutoffs = [10, 50, 80]
|
|
self.hidden_size = 32
|
|
self.d_embed = 32
|
|
self.num_attention_heads = 4
|
|
self.d_head = 8
|
|
self.d_inner = 128
|
|
self.div_val = 2
|
|
self.num_hidden_layers = 5
|
|
self.scope = None
|
|
self.seed = 1
|
|
self.eos_token_id = 0
|
|
self.num_labels = 3
|
|
self.pad_token_id = self.vocab_size - 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
lm_labels = None
|
|
if self.use_labels:
|
|
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
config = TransfoXLConfig(
|
|
vocab_size=self.vocab_size,
|
|
mem_len=self.mem_len,
|
|
clamp_len=self.clamp_len,
|
|
cutoffs=self.cutoffs,
|
|
d_model=self.hidden_size,
|
|
d_embed=self.d_embed,
|
|
n_head=self.num_attention_heads,
|
|
d_head=self.d_head,
|
|
d_inner=self.d_inner,
|
|
div_val=self.div_val,
|
|
n_layer=self.num_hidden_layers,
|
|
eos_token_id=self.eos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
)
|
|
|
|
return (config, input_ids_1, input_ids_2, lm_labels)
|
|
|
|
def set_seed(self):
|
|
random.seed(self.seed)
|
|
torch.manual_seed(self.seed)
|
|
|
|
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
model = TransfoXLModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
outputs1 = model(input_ids_1)
|
|
outputs2 = model(input_ids_2, outputs1["mems"])
|
|
outputs = {
|
|
"hidden_states_1": outputs1["last_hidden_state"],
|
|
"mems_1": outputs1["mems"],
|
|
"hidden_states_2": outputs2["last_hidden_state"],
|
|
"mems_2": outputs2["mems"],
|
|
}
|
|
return outputs
|
|
|
|
def check_transfo_xl_model_output(self, result):
|
|
self.parent.assertEqual(result["hidden_states_1"].shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result["hidden_states_2"].shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result["mems_1"]],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result["mems_2"]],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
model = TransfoXLLMHeadModel(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
lm_logits_1 = model(input_ids_1)["prediction_scores"]
|
|
outputs1 = model(input_ids_1, labels=lm_labels)
|
|
lm_logits_2 = model(input_ids_2, mems=outputs1["mems"])["prediction_scores"]
|
|
outputs2 = model(input_ids_2, labels=lm_labels, mems=outputs1["mems"])
|
|
|
|
outputs = {
|
|
"loss_1": outputs1["losses"],
|
|
"mems_1": outputs1["mems"],
|
|
"lm_logits_1": lm_logits_1,
|
|
"loss_2": outputs2["losses"],
|
|
"mems_2": outputs2["mems"],
|
|
"lm_logits_2": lm_logits_2,
|
|
}
|
|
return outputs
|
|
|
|
def check_transfo_xl_lm_head_output(self, result):
|
|
self.parent.assertEqual(result["loss_1"].shape, (self.batch_size, self.seq_length - 1))
|
|
self.parent.assertEqual(result["lm_logits_1"].shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result["mems_1"]],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
self.parent.assertEqual(result["loss_2"].shape, (self.batch_size, self.seq_length - 1))
|
|
self.parent.assertEqual(result["lm_logits_2"].shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
self.parent.assertListEqual(
|
|
[mem.shape for mem in result["mems_2"]],
|
|
[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers,
|
|
)
|
|
|
|
def create_and_check_transfo_xl_for_sequence_classification(self, config, input_ids_1, input_ids_2, lm_labels):
|
|
config.num_labels = self.num_labels
|
|
model = TransfoXLForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids_1)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids_1}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class TransfoXLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(TransfoXLModel, TransfoXLLMHeadModel, TransfoXLForSequenceClassification) if is_torch_available() else ()
|
|
)
|
|
all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
|
|
test_pruning = False
|
|
test_torchscript = False
|
|
test_resize_embeddings = True
|
|
|
|
def check_cutoffs_and_n_token(
|
|
self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
|
|
):
|
|
# Check that the cutoffs were modified accordingly
|
|
for i in range(len(copied_cutoffs)):
|
|
if i < layer:
|
|
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i])
|
|
if model_class == TransfoXLLMHeadModel:
|
|
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i])
|
|
if i < len(model.config.cutoffs):
|
|
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i])
|
|
else:
|
|
self.assertEqual(model_embed.cutoffs[i], copied_cutoffs[i] + resized_value)
|
|
if model_class == TransfoXLLMHeadModel:
|
|
self.assertEqual(model.crit.cutoffs[i], copied_cutoffs[i] + resized_value)
|
|
if i < len(model.config.cutoffs):
|
|
self.assertEqual(model.config.cutoffs[i], copied_cutoffs[i] + resized_value)
|
|
|
|
self.assertEqual(model_embed.n_token, vocab_size + resized_value)
|
|
if model_class == TransfoXLLMHeadModel:
|
|
self.assertEqual(model.crit.n_token, vocab_size + resized_value)
|
|
|
|
def setUp(self):
|
|
self.model_tester = TransfoXLModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_transfo_xl_model(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
|
|
self.model_tester.check_transfo_xl_model_output(output_result)
|
|
|
|
def test_transfo_xl_lm_head(self):
|
|
self.model_tester.set_seed()
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
|
|
self.model_tester.check_transfo_xl_lm_head_output(output_result)
|
|
|
|
def test_transfo_xl_sequence_classification_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
# xlnet cannot keep gradients in attentions or hidden states
|
|
return
|
|
|
|
@require_torch_multi_gpu
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
# Opt-out of this test.
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_name in TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
|
|
model = TransfoXLModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_resize_tokens_embeddings(self):
|
|
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.test_resize_embeddings:
|
|
return
|
|
|
|
for model_class in self.all_model_classes:
|
|
config = copy.deepcopy(original_config)
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
|
|
if self.model_tester.is_training is False:
|
|
model.eval()
|
|
|
|
model_vocab_size = config.vocab_size
|
|
# Retrieve the embeddings and clone theme
|
|
model_embed = model.resize_token_embeddings(model_vocab_size)
|
|
cloned_embeddings = [emb.weight.clone() for emb in model_embed.emb_layers]
|
|
# Retrieve the cutoffs and copy them
|
|
copied_cutoffs = copy.copy(model_embed.cutoffs)
|
|
|
|
test_layers = [x for x in range(config.div_val)]
|
|
for layer in test_layers:
|
|
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size + 10, layer)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] + 10)
|
|
# Check that the cutoffs were modified accordingly
|
|
self.check_cutoffs_and_n_token(
|
|
copied_cutoffs, layer, model_embed, model, model_class, 10, model_vocab_size
|
|
)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
model(**inputs_dict)
|
|
|
|
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
|
|
model_embed = model.resize_token_embeddings(model_vocab_size - 5, layer)
|
|
self.assertEqual(model.config.vocab_size, model_vocab_size - 5)
|
|
# Check that it actually resizes the embeddings matrix
|
|
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0] - 5)
|
|
# Check that the cutoffs were modified accordingly
|
|
self.check_cutoffs_and_n_token(
|
|
copied_cutoffs, layer, model_embed, model, model_class, -5, model_vocab_size
|
|
)
|
|
|
|
# Check that the model can still do a forward pass successfully (every parameter should be resized)
|
|
# Input ids should be clamped to the maximum size of the vocabulary
|
|
inputs_dict["input_ids"].clamp_(max=model_vocab_size - 5 - 1)
|
|
model(**inputs_dict)
|
|
|
|
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
|
|
models_equal = True
|
|
for p1, p2 in zip(cloned_embeddings[layer], model_embed.emb_layers[layer].weight):
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
# Reset model embeddings to original size
|
|
model.resize_token_embeddings(model_vocab_size, layer)
|
|
self.assertEqual(model_vocab_size, model.config.vocab_size)
|
|
self.assertEqual(model_embed.emb_layers[layer].weight.shape[0], cloned_embeddings[layer].shape[0])
|
|
|
|
def test_resize_embeddings_untied(self):
|
|
# transfo-xl requires special resize for lm-head
|
|
return
|
|
|
|
def _check_attentions_for_generate(
|
|
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(attentions, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
|
|
)
|
|
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_attentions in enumerate(attentions):
|
|
tgt_len = min_length if idx == 0 else (min_length - 2)
|
|
src_len = (min_length + config.mem_len) if idx == 0 else (min_length + config.mem_len - 2)
|
|
|
|
expected_shape = (
|
|
batch_size * num_beam_groups,
|
|
config.num_attention_heads,
|
|
tgt_len,
|
|
src_len,
|
|
)
|
|
|
|
# check attn size
|
|
self.assertListEqual(
|
|
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
|
|
)
|
|
|
|
def _check_hidden_states_for_generate(
|
|
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(hidden_states, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
|
|
[True] * len(hidden_states),
|
|
)
|
|
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_hidden_states in enumerate(hidden_states):
|
|
seq_len = min_length if idx == 0 else min_length - 2
|
|
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
|
|
# check hidden size
|
|
self.assertListEqual(
|
|
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
|
|
[expected_shape] * len(iter_hidden_states),
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
|
|
@slow
|
|
def test_lm_generate_transfo_xl_wt103(self):
|
|
model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
|
|
model.to(torch_device)
|
|
input_ids = torch.tensor(
|
|
[
|
|
[
|
|
33,
|
|
1297,
|
|
2,
|
|
1,
|
|
1009,
|
|
4,
|
|
1109,
|
|
11739,
|
|
4762,
|
|
358,
|
|
5,
|
|
25,
|
|
245,
|
|
22,
|
|
1706,
|
|
17,
|
|
20098,
|
|
5,
|
|
3215,
|
|
21,
|
|
37,
|
|
1110,
|
|
3,
|
|
13,
|
|
1041,
|
|
4,
|
|
24,
|
|
603,
|
|
490,
|
|
2,
|
|
71477,
|
|
20098,
|
|
104447,
|
|
2,
|
|
20961,
|
|
1,
|
|
2604,
|
|
4,
|
|
1,
|
|
329,
|
|
3,
|
|
6224,
|
|
831,
|
|
16002,
|
|
2,
|
|
8,
|
|
603,
|
|
78967,
|
|
29546,
|
|
23,
|
|
803,
|
|
20,
|
|
25,
|
|
416,
|
|
5,
|
|
8,
|
|
232,
|
|
4,
|
|
277,
|
|
6,
|
|
1855,
|
|
4601,
|
|
3,
|
|
29546,
|
|
54,
|
|
8,
|
|
3609,
|
|
5,
|
|
57211,
|
|
49,
|
|
4,
|
|
1,
|
|
277,
|
|
18,
|
|
8,
|
|
1755,
|
|
15691,
|
|
3,
|
|
341,
|
|
25,
|
|
416,
|
|
693,
|
|
42573,
|
|
71,
|
|
17,
|
|
401,
|
|
94,
|
|
31,
|
|
17919,
|
|
2,
|
|
29546,
|
|
7873,
|
|
18,
|
|
1,
|
|
435,
|
|
23,
|
|
11011,
|
|
755,
|
|
5,
|
|
5167,
|
|
3,
|
|
7983,
|
|
98,
|
|
84,
|
|
2,
|
|
29546,
|
|
3267,
|
|
8,
|
|
3609,
|
|
4,
|
|
1,
|
|
4865,
|
|
1075,
|
|
2,
|
|
6087,
|
|
71,
|
|
6,
|
|
346,
|
|
8,
|
|
5854,
|
|
3,
|
|
29546,
|
|
824,
|
|
1400,
|
|
1868,
|
|
2,
|
|
19,
|
|
160,
|
|
2,
|
|
311,
|
|
8,
|
|
5496,
|
|
2,
|
|
20920,
|
|
17,
|
|
25,
|
|
15097,
|
|
3,
|
|
24,
|
|
24,
|
|
0,
|
|
]
|
|
],
|
|
dtype=torch.long,
|
|
device=torch_device,
|
|
)
|
|
# In 1991 , the remains of Russian Tsar Nicholas II and his family
|
|
# ( except for Alexei and Maria ) are discovered .
|
|
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
|
|
# remainder of the story . 1883 Western Siberia ,
|
|
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
|
|
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
|
|
# father initially slaps him for making such an accusation , Rasputin watches as the
|
|
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
|
|
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
|
|
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
|
|
|
|
expected_output_ids = [
|
|
33,
|
|
1297,
|
|
2,
|
|
1,
|
|
1009,
|
|
4,
|
|
1109,
|
|
11739,
|
|
4762,
|
|
358,
|
|
5,
|
|
25,
|
|
245,
|
|
22,
|
|
1706,
|
|
17,
|
|
20098,
|
|
5,
|
|
3215,
|
|
21,
|
|
37,
|
|
1110,
|
|
3,
|
|
13,
|
|
1041,
|
|
4,
|
|
24,
|
|
603,
|
|
490,
|
|
2,
|
|
71477,
|
|
20098,
|
|
104447,
|
|
2,
|
|
20961,
|
|
1,
|
|
2604,
|
|
4,
|
|
1,
|
|
329,
|
|
3,
|
|
6224,
|
|
831,
|
|
16002,
|
|
2,
|
|
8,
|
|
603,
|
|
78967,
|
|
29546,
|
|
23,
|
|
803,
|
|
20,
|
|
25,
|
|
416,
|
|
5,
|
|
8,
|
|
232,
|
|
4,
|
|
277,
|
|
6,
|
|
1855,
|
|
4601,
|
|
3,
|
|
29546,
|
|
54,
|
|
8,
|
|
3609,
|
|
5,
|
|
57211,
|
|
49,
|
|
4,
|
|
1,
|
|
277,
|
|
18,
|
|
8,
|
|
1755,
|
|
15691,
|
|
3,
|
|
341,
|
|
25,
|
|
416,
|
|
693,
|
|
42573,
|
|
71,
|
|
17,
|
|
401,
|
|
94,
|
|
31,
|
|
17919,
|
|
2,
|
|
29546,
|
|
7873,
|
|
18,
|
|
1,
|
|
435,
|
|
23,
|
|
11011,
|
|
755,
|
|
5,
|
|
5167,
|
|
3,
|
|
7983,
|
|
98,
|
|
84,
|
|
2,
|
|
29546,
|
|
3267,
|
|
8,
|
|
3609,
|
|
4,
|
|
1,
|
|
4865,
|
|
1075,
|
|
2,
|
|
6087,
|
|
71,
|
|
6,
|
|
346,
|
|
8,
|
|
5854,
|
|
3,
|
|
29546,
|
|
824,
|
|
1400,
|
|
1868,
|
|
2,
|
|
19,
|
|
160,
|
|
2,
|
|
311,
|
|
8,
|
|
5496,
|
|
2,
|
|
20920,
|
|
17,
|
|
25,
|
|
15097,
|
|
3,
|
|
24,
|
|
24,
|
|
0,
|
|
33,
|
|
1,
|
|
142,
|
|
1298,
|
|
188,
|
|
2,
|
|
29546,
|
|
113,
|
|
8,
|
|
3654,
|
|
4,
|
|
1,
|
|
1109,
|
|
7136,
|
|
833,
|
|
3,
|
|
13,
|
|
1645,
|
|
4,
|
|
29546,
|
|
11,
|
|
104,
|
|
7,
|
|
1,
|
|
1109,
|
|
532,
|
|
7129,
|
|
2,
|
|
10,
|
|
83507,
|
|
2,
|
|
1162,
|
|
1123,
|
|
2,
|
|
6,
|
|
7245,
|
|
10,
|
|
2,
|
|
5,
|
|
11,
|
|
104,
|
|
7,
|
|
1,
|
|
1109,
|
|
532,
|
|
7129,
|
|
2,
|
|
10,
|
|
24,
|
|
24,
|
|
10,
|
|
22,
|
|
10,
|
|
13,
|
|
770,
|
|
5863,
|
|
4,
|
|
7245,
|
|
10,
|
|
]
|
|
# In 1991, the remains of Russian Tsar Nicholas II and his family ( except for
|
|
# Alexei and Maria ) are discovered. The voice of young son, Tsarevich Alexei
|
|
# Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young
|
|
# Grigori Rasputin is asked by his father and a group of men to perform magic.
|
|
# Rasputin has a vision and denounces one of the men as a horse thief. Although
|
|
# his father initially slaps him for making such an accusation, Rasputin watches
|
|
# as the man is chased outside and beaten. Twenty years later, Rasputin sees a
|
|
# vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly
|
|
# becomes famous, with people, even a bishop, begging for his blessing. In the
|
|
# early 20th century, Rasputin became a symbol of the Russian Orthodox Church.
|
|
# The image of Rasputin was used in the Russian national anthem, " Nearer, My God,
|
|
# to Heaven ", and was used in the Russian national anthem, " " ( " The Great Spirit
|
|
# of Heaven "
|
|
|
|
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
|
|
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
|