mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 18:51:14 +06:00

* Define new output dataclasses for greedy generation * Add output_[...] flags in greedy generation methods Added output_attentions, output_hidden_states, output_scores flags in generate and greedy_search methods in GenerationMixin. * [WIP] Implement logic and tests for output flags in generation * Update GreedySearchOutput classes & docstring * Implement greedy search output accumulation logic Update greedy_search unittests Fix generate method return value docstring Properly init flags with the default config * Update configuration to add output_scores flag * Fix test_generation_utils Sort imports and fix isinstance tests for GreedySearchOutputs * Fix typo in generation_utils * Add return_dict_in_generate for backwards compatibility * Add return_dict_in_generate flag in config * Fix tyPo in configuration * Fix handling of attentions and hidden_states flags * Make style & quality * first attempt attentions * some corrections * improve tests * special models requires special test * disable xlm test for now * clean tests * fix for tf * isort * Add output dataclasses for other generation methods * Add logic to return dict in sample generation * Complete test for sample generation - Pass output_attentions and output_hidden_states flags to encoder in encoder-decoder models - Fix import satements order in test_generation_utils file * Add logic to return dict in sample generation - Refactor tests to avoid using self.assertTrue, which provides scarce information when the test fails - Add tests for the three beam_search methods: vanilla, sample and grouped * Style doc * Fix copy-paste error in generation tests * Rename logits to scores and refactor * Refactor group_beam_search for consistency * make style * add sequences_scores * fix all tests * add docs * fix beam search finalize test * correct docstring * clean some files * Made suggested changes to the documentation * Style doc ? * Style doc using the Python util * Update src/transformers/generation_utils.py * fix empty lines * fix all test Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
177 lines
8.2 KiB
Python
177 lines
8.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" OpenAI GPT configuration """
|
|
|
|
from ...configuration_utils import PretrainedConfig
|
|
from ...utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"}
|
|
|
|
|
|
class OpenAIGPTConfig(PretrainedConfig):
|
|
"""
|
|
This is the configuration class to store the configuration of a :class:`~transformers.OpenAIGPTModel` or a
|
|
:class:`~transformers.TFOpenAIGPTModel`. It is used to instantiate a GPT model according to the specified
|
|
arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar
|
|
configuration to that of the `GPT <https://huggingface.co/openai-gpt>`__ architecture from OpenAI.
|
|
|
|
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
|
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
|
|
|
Args:
|
|
vocab_size (:obj:`int`, `optional`, defaults to 40478):
|
|
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
|
:obj:`inputs_ids` passed when calling :class:`~transformers.OpenAIGPTModel` or
|
|
:class:`~transformers.TFOpenAIGPTModel`.
|
|
n_positions (:obj:`int`, `optional`, defaults to 512):
|
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
|
just in case (e.g., 512 or 1024 or 2048).
|
|
n_ctx (:obj:`int`, `optional`, defaults to 512):
|
|
Dimensionality of the causal mask (usually same as n_positions).
|
|
n_embd (:obj:`int`, `optional`, defaults to 768):
|
|
Dimensionality of the embeddings and hidden states.
|
|
n_layer (:obj:`int`, `optional`, defaults to 12):
|
|
Number of hidden layers in the Transformer encoder.
|
|
n_head (:obj:`int`, `optional`, defaults to 12):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
afn (:obj:`str` or :obj:`Callable`, `optional`, defaults to :obj:`"gelu"`):
|
|
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
|
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
|
|
resid_pdrop (:obj:`float`, `optional`, defaults to 0.1):
|
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
|
embd_pdrop (:obj:`int`, `optional`, defaults to 0.1):
|
|
The dropout ratio for the embeddings.
|
|
attn_pdrop (:obj:`float`, `optional`, defaults to 0.1):
|
|
The dropout ratio for the attention.
|
|
layer_norm_epsilon (:obj:`float`, `optional`, defaults to 1e-5):
|
|
The epsilon to use in the layer normalization layers
|
|
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
predict_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Whether or not special tokens should be predicted when the model has a language modeling head.
|
|
summary_type (:obj:`str`, `optional`, defaults to :obj:`"cls_index"`):
|
|
Argument used when doing sequence summary, used in the models
|
|
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
|
|
|
|
Has to be one of the following options:
|
|
|
|
- :obj:`"last"`: Take the last token hidden state (like XLNet).
|
|
- :obj:`"first"`: Take the first token hidden state (like BERT).
|
|
- :obj:`"mean"`: Take the mean of all tokens hidden states.
|
|
- :obj:`"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
|
- :obj:`"attn"`: Not implemented now, use multi-head attention.
|
|
summary_use_proj (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Argument used when doing sequence summary, used in the models
|
|
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
|
|
|
|
Whether or not to add a projection after the vector extraction.
|
|
summary_activation (:obj:`str`, `optional`):
|
|
Argument used when doing sequence summary, used in the models
|
|
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
|
|
|
|
Pass :obj:`"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
|
summary_proj_to_labels (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Argument used when doing sequence summary, used in the models
|
|
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
|
|
|
|
Whether the projection outputs should have :obj:`config.num_labels` or :obj:`config.hidden_size` classes.
|
|
summary_first_dropout (:obj:`float`, `optional`, defaults to 0.1):
|
|
Argument used when doing sequence summary, used in the models
|
|
:class:`~transformers.OpenAIGPTDoubleHeadsModel` and :class:`~transformers.OpenAIGPTDoubleHeadsModel`.
|
|
|
|
The dropout ratio to be used after the projection and activation.
|
|
use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models).
|
|
|
|
|
|
Examples::
|
|
|
|
>>> from transformers import OpenAIGPTConfig, OpenAIGPTModel
|
|
|
|
>>> # Initializing a GPT configuration
|
|
>>> configuration = OpenAIGPTConfig()
|
|
|
|
>>> # Initializing a model from the configuration
|
|
>>> model = OpenAIGPTModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
"""
|
|
|
|
model_type = "openai-gpt"
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=40478,
|
|
n_positions=512,
|
|
n_ctx=512,
|
|
n_embd=768,
|
|
n_layer=12,
|
|
n_head=12,
|
|
afn="gelu",
|
|
resid_pdrop=0.1,
|
|
embd_pdrop=0.1,
|
|
attn_pdrop=0.1,
|
|
layer_norm_epsilon=1e-5,
|
|
initializer_range=0.02,
|
|
predict_special_tokens=True,
|
|
summary_type="cls_index",
|
|
summary_use_proj=True,
|
|
summary_activation=None,
|
|
summary_proj_to_labels=True,
|
|
summary_first_dropout=0.1,
|
|
**kwargs
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.vocab_size = vocab_size
|
|
self.n_ctx = n_ctx
|
|
self.n_positions = n_positions
|
|
self.n_embd = n_embd
|
|
self.n_layer = n_layer
|
|
self.n_head = n_head
|
|
self.afn = afn
|
|
self.resid_pdrop = resid_pdrop
|
|
self.embd_pdrop = embd_pdrop
|
|
self.attn_pdrop = attn_pdrop
|
|
self.layer_norm_epsilon = layer_norm_epsilon
|
|
self.initializer_range = initializer_range
|
|
self.predict_special_tokens = predict_special_tokens
|
|
self.summary_type = summary_type
|
|
self.summary_use_proj = summary_use_proj
|
|
self.summary_activation = summary_activation
|
|
self.summary_first_dropout = summary_first_dropout
|
|
self.summary_proj_to_labels = summary_proj_to_labels
|
|
|
|
@property
|
|
def max_position_embeddings(self):
|
|
return self.n_positions
|
|
|
|
@property
|
|
def hidden_size(self):
|
|
return self.n_embd
|
|
|
|
@property
|
|
def num_attention_heads(self):
|
|
return self.n_head
|
|
|
|
@property
|
|
def num_hidden_layers(self):
|
|
return self.n_layer
|