transformers/tests/test_tokenization_auto.py
Sylvain Gugger c89bdfbe72
Reorganize repo (#8580)
* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
2020-11-16 21:43:42 -05:00

121 lines
5.4 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPT2Tokenizer,
GPT2TokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
)
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKWOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
require_tokenizers,
slow,
)
class AutoTokenizerTest(unittest.TestCase):
@slow
def test_tokenizer_from_pretrained(self):
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertGreater(len(tokenizer), 0)
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
tokenizer = AutoTokenizer.from_pretrained(model_name)
self.assertIsNotNone(tokenizer)
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
self.assertGreater(len(tokenizer), 0)
def test_tokenizer_from_pretrained_identifier(self):
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 12)
def test_tokenizer_from_model_type(self):
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 20)
def test_tokenizer_from_tokenizer_class(self):
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
self.assertIsInstance(config, RobertaConfig)
# Check that tokenizer_type ≠ model_type
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
self.assertEqual(tokenizer.vocab_size, 12)
@require_tokenizers
def test_tokenizer_identifier_with_correct_config(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
if isinstance(tokenizer, BertTokenizer):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
else:
self.assertEqual(tokenizer.do_lower_case, False)
self.assertEqual(tokenizer.max_len, 512)
@require_tokenizers
def test_tokenizer_identifier_non_existent(self):
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaises(EnvironmentError):
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
def test_parents_and_children_in_mappings(self):
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
# by the parents and will return the wrong configuration type when using auto models
mappings = (TOKENIZER_MAPPING,)
for mapping in mappings:
mapping = tuple(mapping.items())
for index, (child_config, (child_model_py, child_model_fast)) in enumerate(mapping[1:]):
for parent_config, (parent_model_py, parent_model_fast) in mapping[: index + 1]:
with self.subTest(
msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
):
self.assertFalse(issubclass(child_config, parent_config))
# Check for Slow tokenizer implementation if provided
if child_model_py and parent_model_py:
self.assertFalse(issubclass(child_model_py, parent_model_py))
# Check for Fast tokenizer implementation if provided
if child_model_fast and parent_model_fast:
self.assertFalse(issubclass(child_model_fast, parent_model_fast))
@require_tokenizers
def test_from_pretrained_use_fast_toggle(self):
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=False), BertTokenizer)
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizerFast)