transformers/tests/test_modeling_flax_bert.py
Sylvain Gugger c89bdfbe72
Reorganize repo (#8580)
* Put models in subfolders

* Styling

* Fix imports in tests

* More fixes in test imports

* Sneaky hidden imports

* Fix imports in doc files

* More sneaky imports

* Finish fixing tests

* Fix examples

* Fix path for copies

* More fixes for examples

* Fix dummy files

* More fixes for example

* More model import fixes

* Is this why you're unhappy GitHub?

* Fix imports in conver command
2020-11-16 21:43:42 -05:00

42 lines
1.6 KiB
Python

import unittest
from numpy import ndarray
from transformers import BertTokenizerFast, TensorType, is_flax_available, is_torch_available
from transformers.testing_utils import require_flax, require_torch
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
if is_torch_available():
import torch
from transformers.models.bert.modeling_bert import BertModel
@require_flax
@require_torch
class FlaxBertModelTest(unittest.TestCase):
def test_from_pytorch(self):
with torch.no_grad():
with self.subTest("bert-base-cased"):
tokenizer = BertTokenizerFast.from_pretrained("bert-base-cased")
fx_model = FlaxBertModel.from_pretrained("bert-base-cased")
pt_model = BertModel.from_pretrained("bert-base-cased")
# Check for simple input
pt_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.PYTORCH)
fx_inputs = tokenizer.encode_plus("This is a simple input", return_tensors=TensorType.JAX)
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_outputs = fx_model(**fx_inputs)
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
self.assert_almost_equals(fx_output, pt_output.numpy(), 5e-4)
def assert_almost_equals(self, a: ndarray, b: ndarray, tol: float):
diff = (a - b).sum()
self.assertLessEqual(diff, tol, "Difference between torch and flax is {} (>= {})".format(diff, tol))