transformers/tests/models/internvl/test_modeling_internvl.py
Yih-Dar 04cdf83244
Update some tests for torch 2.7.1 (#38701)
* fix 1

* fix 2

* fix 3

* fix 4

* fp16

* break

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

* fix

---------

Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
2025-06-10 11:46:52 +02:00

1015 lines
46 KiB
Python

# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch InternVL model."""
import unittest
from io import BytesIO
import requests
from transformers import (
AutoProcessor,
BitsAndBytesConfig,
InternVLConfig,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
Expectations,
cleanup,
require_av,
require_bitsandbytes,
require_deterministic_for_xpu,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import InternVLForConditionalGeneration, InternVLModel
if is_vision_available():
from PIL import Image
class InternVLVisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
image_seq_length=64,
vision_feature_layer=-1,
ignore_index=-100,
bos_token_id=0,
eos_token_id=0,
pad_token_id=0,
image_token_id=1,
num_channels=3,
image_size=64,
model_type="internvl",
is_training=True,
text_config={
"model_type": "qwen2",
"vocab_size": 99,
"hidden_size": 128,
"intermediate_size": 37,
"num_hidden_layers": 4,
"num_attention_heads": 4,
"num_key_value_heads": 2,
"output_channels": 64,
"hidden_act": "silu",
"max_position_embeddings": 512,
"rope_theta": 10000,
"mlp_ratio": 4,
"tie_word_embeddings": True,
"bos_token_id": 0,
"eos_token_id": 0,
"pad_token_id": 0,
},
vision_config={
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 128,
"image_size": 64,
"patch_size": 4,
"num_channels": 3,
"hidden_act": "quick_gelu",
"use_absolute_position_embeddings": True,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.image_token_id = image_token_id
self.model_type = model_type
self.text_config = text_config
self.vision_config = vision_config
self.batch_size = batch_size
self.vision_feature_layer = vision_feature_layer
self.is_training = is_training
self.image_seq_length = image_seq_length
self.num_channels = num_channels
self.image_size = image_size
self.seq_length = seq_length + image_seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
def get_config(self):
return InternVLConfig(
text_config=self.text_config,
vision_config=self.vision_config,
model_type=self.model_type,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
image_token_id=self.image_token_id,
image_seq_length=self.image_seq_length,
vision_feature_layer=self.vision_feature_layer,
)
def prepare_config_and_inputs(self):
config = self.get_config()
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
# input_ids[:, -1] = self.pad_token_id
input_ids[input_ids == self.image_token_id] = self.pad_token_id
input_ids[:, : self.image_seq_length] = self.image_token_id
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_model_fp16_forward(self, config, input_ids, pixel_values, attention_mask):
model = InternVLForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_model_fp16_autocast_forward(self, config, input_ids, pixel_values, attention_mask):
config.torch_dtype = torch.float16
model = InternVLForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type=torch_device, dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class InternVLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (InternVLForConditionalGeneration, InternVLModel) if is_torch_available() else ()
all_generative_model_classes = (InternVLForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"image-text-to-text": InternVLForConditionalGeneration,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
def setUp(self):
self.model_tester = InternVLVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=InternVLConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip("FlashAttention only support fp16 and bf16 data type")
def test_flash_attn_2_fp32_ln(self):
pass
@unittest.skip("Qwen2 flash attention does not support right padding")
def test_flash_attn_2_inference_equivalence_right_padding(self):
pass
@slow
@require_torch_accelerator
class InternVLQwen2IntegrationTest(unittest.TestCase):
def setUp(self):
self.small_model_checkpoint = "OpenGVLab/InternVL3-1B-hf"
self.medium_model_checkpoint = "OpenGVLab/InternVL3-2B-hf"
cleanup(torch_device, gc_collect=True)
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_qwen2_small_model_integration_generate(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n"
)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "The image shows two cats lying on a pink surface, which appears to be a bed or couch."
self.assertEqual(decoded_output, expected_output)
def test_qwen2_small_model_integration_forward(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n"
)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
# Forward
with torch.inference_mode():
output = model(**inputs)
actual_logits = output.logits[0, -1, :5].cpu()
expected_logits_all = Expectations(
{
("xpu", 3): torch.tensor([11.7500, 14.7500, 14.1250, 10.5625, 6.7812], dtype=torch.float16),
("cuda", 7): torch.tensor([11.9531, 14.7031, 14.2734, 10.6562, 6.9219], dtype=torch.float16),
("cuda", 8): torch.tensor([11.9609, 14.7188, 14.2734, 10.6484, 6.9141], dtype=torch.float16),
}
) # fmt: skip
expected_logits = expected_logits_all.get_expectation()
self.assertTrue(
torch.allclose(actual_logits, expected_logits, atol=0.1),
f"Actual logits: {actual_logits}"
f"\nExpected logits: {expected_logits}"
f"\nDifference: {torch.abs(actual_logits - expected_logits)}",
)
@require_deterministic_for_xpu
def test_qwen2_small_model_integration_generate_text_only(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
prompt = "<|im_start|>user\nWrite a haiku<|im_end|>\n<|im_start|>assistant\n"
inputs = processor(text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=200, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_outputs = Expectations(
{
("xpu", 3): "Whispers of dawn,\nSilent whispers of the night,\nNew day's light.",
("cuda", 7): 'Whispers of dawn,\nSilent whispers of night,\nPeace in the stillness.',
("cuda", 8): 'Whispers of dawn,\nSilent whispers of night,\nPeace in the stillness.',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(decoded_output, expected_output)
def test_qwen2_small_model_integration_generate_chat_template(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
{"type": "text", "text": "Please describe the image explicitly."},
],
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "The image shows two cats lying on a pink surface, which appears to be a bed or couch."
self.assertEqual(decoded_output, expected_output)
@require_deterministic_for_xpu
def test_qwen2_small_model_integration_batched_generate(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
prompt = [
"<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n",
"<|im_start|>user\n<IMG_CONTEXT>\nDescribe this image<|im_end|>\n<|im_start|>assistant\n",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
inputs = processor(text=prompt, images=[[image1], [image2]], padding=True, return_tensors="pt").to(
torch_device, dtype=torch.float16
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0], skip_special_tokens=True)
expected_output = "user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace." # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): 'user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese archway, known as a "Chinese Gate" or "Chinese Gate"',
("cuda", 7): 'user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese archway, known as a "Chinese Gate" or "Chinese Gate of',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
def test_qwen2_small_model_integration_batched_generate_multi_image(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
prompt = [
"<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n",
"<|im_start|>user\n<IMG_CONTEXT><IMG_CONTEXT>\nWhat are the differences between these two images?<|im_end|>\n<|im_start|>assistant\n",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(
BytesIO(
requests.get(
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
).content
)
)
image3 = Image.open(
BytesIO(
requests.get(
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
).content
)
)
inputs = processor(text=prompt, images=[[image1], [image2, image3]], padding=True, return_tensors="pt").to(
torch_device, dtype=torch.float16
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0], skip_special_tokens=True)
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
expected_output = "user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace." # fmt: skip
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "user\n\nWhat are the differences between these two images?\nassistant\nThe images show the Statue of Liberty and the Golden Gate Bridge from different angles. Here are the differences:\n\n1. **Foreground",
("cuda", 7): "user\n\nWhat are the differences between these two images?\nassistant\nThe images show the Statue of Liberty and the Golden Gate Bridge from different angles. Here are the differences:\n\n1. **Foreground",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@require_av
@require_bitsandbytes
def test_qwen2_medium_model_integration_video(self):
processor = AutoProcessor.from_pretrained(self.medium_model_checkpoint)
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = InternVLForConditionalGeneration.from_pretrained(
self.medium_model_checkpoint, quantization_config=quantization_config
)
# Prepare inputs
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
}
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
num_frames=8,
).to(torch_device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "The man is performing a volley.",
("cuda", 7): "The man is performing a forehand shot.",
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@require_av
@require_deterministic_for_xpu
def test_qwen2_small_model_integration_interleaved_images_videos(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, torch_dtype=torch.float16, device_map=torch_device
)
messages = [
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{"type": "text", "text": "What are the differences between these two images?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://llava-vl.github.io/static/images/view.jpg",
},
{"type": "text", "text": "Write a haiku for this image"},
],
}
],
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
num_frames=8,
).to(torch_device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0], skip_special_tokens=True)
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
expected_outputs = Expectations(
{
("xpu", 3): "user\n\n\nWhat are the differences between these two images?\nassistant\nThe images depict two distinct scenes:\n\n1. **Left Image:**\n - The Statue of Liberty is prominently featured on an",
("cuda", 7): 'user\n\n\nWhat are the differences between these two images?\nassistant\nThe images depict two distinct scenes:\n\n1. **Left Image:**\n - The Statue of Liberty is prominently featured on an',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot.",
("cuda", 7): 'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nA forehand shot',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check third output
decoded_output = processor.decode(output[2], skip_special_tokens=True)
expected_output = (
"user\n\nWrite a haiku for this image\nassistant\nSilky lake, \nWooden pier, \nNature's peace."
)
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@slow
@require_torch_accelerator
class InternVLLlamaIntegrationTest(unittest.TestCase):
def setUp(self):
self.small_model_checkpoint = "OpenGVLab/InternVL2_5-2B-MPO-hf"
self.medium_model_checkpoint = "OpenGVLab/InternVL2_5-8B-MPO-hf"
cleanup(torch_device, gc_collect=True)
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def test_llama_small_model_integration_generate(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n"
)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "The image shows two cats sleeping on a pink couch. They are lying side by side, with their"
self.assertEqual(decoded_output, expected_output)
def test_llama_small_model_integration_forward(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<|im_start|>user\n<IMG_CONTEXT>\nPlease describe the image explicitly.<|im_end|>\n<|im_start|>assistant\n"
)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
# Forward
with torch.inference_mode():
output = model(**inputs)
actual_logits = output.logits[0, -1, :5].cpu()
expected_logits_all = Expectations(
{
("xpu", 3): torch.tensor([-9.8750, -0.5703, 1.4297, -10.3125, -10.3125], dtype=torch.float16),
("cuda", 7): torch.tensor([-9.8750, -0.4861, 1.4648, -10.3359, -10.3359], dtype=torch.float16),
("cuda", 8): torch.tensor([-9.8906, -0.4995, 1.4473, -10.3359, -10.3438], dtype=torch.float16),
}
) # fmt: skip
expected_logits = torch.tensor(expected_logits_all.get_expectation(), dtype=torch.float16)
# The original implementation and the transformers implementation do not match exactly, hence the higher tolerance.
# The difference is likely due to the different implementations of the attention mechanism (different order of operations)
# between the transformers Llama model and the original InternLM model.
# The difference has almost no effect on the output tokens, but it does affect the logits a lot more.
self.assertTrue(
torch.allclose(actual_logits, expected_logits, atol=1e-3),
f"Actual logits: {actual_logits}"
f"\nExpected logits: {expected_logits}"
f"\nDifference: {torch.abs(actual_logits - expected_logits)}",
)
def test_llama_small_model_integration_generate_text_only(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
prompt = "<|im_start|>user\nWrite a haiku<|im_end|>\n<|im_start|>assistant\n"
inputs = processor(text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=200, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_outputs = Expectations(
{
("cuda", 7): "Autumn leaves fall,\nNature's breath, a gentle sigh,\nSilent whispers.",
("cuda", 8): "Autumn leaves fall,\nNature's breath, a silent sigh,\nWinter's chill approaches.",
}
)
expected_output = expected_outputs.get_expectation()
self.assertEqual(decoded_output, expected_output)
def test_llama_small_model_integration_generate_chat_template(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
{"type": "text", "text": "Please describe the image explicitly."},
],
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(torch_device, dtype=torch.float16)
with torch.no_grad():
generate_ids = model.generate(**inputs, max_new_tokens=20, do_sample=False)
decoded_output = processor.decode(
generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True
)
expected_output = "The image shows two cats sleeping on a pink couch. They are lying side by side, with their"
self.assertEqual(decoded_output, expected_output)
def test_llama_small_model_integration_batched_generate(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
prompt = [
"<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n",
"<|im_start|>user\n<IMG_CONTEXT>\nDescribe this image<|im_end|>\n<|im_start|>assistant\n",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(requests.get("https://www.ilankelman.org/stopsigns/australia.jpg", stream=True).raw)
inputs = processor(text=prompt, images=[[image1], [image2]], padding=True, return_tensors="pt").to(
torch_device, dtype=torch.float16
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden path leads to calm lake,\nNature's peaceful grace.",
("cuda", 7): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.',
("cuda", 8): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_output = "user\n\nDescribe this image\nassistant\nThe image shows a street scene with a traditional Chinese gate in the background, adorned with red and gold colors and Chinese characters"
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
def test_llama_small_model_integration_batched_generate_multi_image(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, device_map=torch_device, torch_dtype=torch.float16
)
# Prepare inputs
prompt = [
"<|im_start|>user\n<IMG_CONTEXT>\nWrite a haiku for this image<|im_end|>\n<|im_start|>assistant\n",
"<|im_start|>user\n<IMG_CONTEXT><IMG_CONTEXT>\nWhat are the difference between these two images?<|im_end|>\n<|im_start|>assistant\n",
]
image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw)
image2 = Image.open(
BytesIO(
requests.get(
"https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
).content
)
)
image3 = Image.open(
BytesIO(
requests.get(
"https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg"
).content
)
)
inputs = processor(text=prompt, images=[[image1], [image2, image3]], padding=True, return_tensors="pt").to(
torch_device, dtype=torch.float16
)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
# Check first output
decoded_output = processor.decode(output[0], skip_special_tokens=True)
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
expected_output = "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors."
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_output = "user\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After closely examining the images again, I can see that there are several differences"
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@require_av
@require_bitsandbytes
def test_llama_medium_model_integration_video(self):
processor = AutoProcessor.from_pretrained(self.medium_model_checkpoint)
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
model = InternVLForConditionalGeneration.from_pretrained(
self.medium_model_checkpoint, quantization_config=quantization_config
)
# Prepare inputs
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
}
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
num_frames=8,
).to(torch_device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
expected_output = "The man is performing a forehand shot."
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
@require_av
def test_llama_small_model_integration_interleaved_images_videos(self):
processor = AutoProcessor.from_pretrained(self.small_model_checkpoint)
model = InternVLForConditionalGeneration.from_pretrained(
self.small_model_checkpoint, torch_dtype=torch.float16, device_map=torch_device
)
messages = [
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{"type": "text", "text": "What are the difference between these two images?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://llava-vl.github.io/static/images/view.jpg",
},
{"type": "text", "text": "Write a haiku for this image"},
],
}
],
]
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True,
num_frames=8,
).to(torch_device, dtype=torch.float16)
output = model.generate(**inputs, do_sample=False, max_new_tokens=25)
decoded_output = processor.decode(output[0], skip_special_tokens=True)
# Batching seems to alter the output slightly, but it is also the case in the original implementation. This seems to be expected: https://github.com/huggingface/transformers/issues/23017#issuecomment-1649630232
expected_outputs = Expectations(
{
("xpu", 3): "user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After re-examining the images, I can see that they are actually",
("cuda", 7): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. Upon closer inspection, the differences between the two images are:\n\n1. **',
("cuda", 8): 'user\n\n\nWhat are the difference between these two images?\nassistant\nI apologize for the confusion in my previous response. After re-examining the images, I can see that there are no',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check second output
decoded_output = processor.decode(output[1], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common shot in tennis where the player swings the racket across their",
("cuda", 7): 'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common stroke in tennis where the player swings the racket across their',
("cuda", 8): 'user\nFrame1: \nFrame2: \nFrame3: \nFrame4: \nFrame5: \nFrame6: \nFrame7: \nFrame8: \nWhat type of shot is the man performing?\nassistant\nThe man is performing a forehand shot. This is a common stroke in tennis where the player swings the racket across their',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)
# Check third output
decoded_output = processor.decode(output[2], skip_special_tokens=True)
expected_outputs = Expectations(
{
("xpu", 3): "user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.",
("cuda", 7): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.',
("cuda", 8): 'user\n\nWrite a haiku for this image\nassistant\nMajestic snow-capped peaks,\nWooden dock stretches to the sea,\nSilent water mirrors.',
}
) # fmt: skip
expected_output = expected_outputs.get_expectation()
self.assertEqual(
decoded_output,
expected_output,
f"Decoded output: {decoded_output}\nExpected output: {expected_output}",
)