transformers/tests/test_modeling_tf_camembert.py
Sylvain Gugger c67d1a0259
Tf model outputs (#6247)
* TF outputs and test on BERT

* Albert to DistilBert

* All remaining TF models except T5

* Documentation

* One file forgotten

* TF outputs and test on BERT

* Albert to DistilBert

* All remaining TF models except T5

* Documentation

* One file forgotten

* Add new models and fix issues

* Quality improvements

* Add T5

* A bit of cleanup

* Fix for slow tests

* Style
2020-08-05 11:34:39 -04:00

50 lines
1.8 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
if is_tf_available():
import tensorflow as tf
import numpy as np
from transformers import TFCamembertModel
@require_tf
class TFCamembertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = TFCamembertModel.from_pretrained("jplu/tf-camembert-base")
input_ids = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]], dtype=tf.int32,
) # J'aime le camembert !"
output = model(input_ids)["last_hidden_state"]
expected_shape = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]], dtype=tf.float32,
)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))