transformers/tests/test_pipelines_conversational.py
Nicolas Patry c66ffa3a17
[FIX] TextGenerationPipeline is currently broken. (#8256)
* [FIX] TextGenerationPipeline is currently broken.

It's most likely due to #8180.
What's missing is a multi vs single string handler at the beginning of
the pipe.
And also there was no testing of this pipeline.

* Fixing Conversational tests too.
2020-11-03 10:10:22 -05:00

98 lines
4.7 KiB
Python

import unittest
from transformers import Conversation, pipeline
from transformers.testing_utils import require_torch, slow, torch_device
from .test_pipelines_common import MonoInputPipelineCommonMixin
DEFAULT_DEVICE_NUM = -1 if torch_device == "cpu" else 0
class ConversationalPipelineTests(MonoInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "conversational"
small_models = [] # Models tested without the @slow decorator
large_models = ["microsoft/DialoGPT-medium"] # Models tested with the @slow decorator
invalid_inputs = ["Hi there!", Conversation()]
def _test_pipeline(self, nlp):
# e overide the default test method to check that the output is a `Conversation` object
self.assertIsNotNone(nlp)
# We need to recreate conversation for successive tests to pass as
# Conversation objects get *consumed* by the pipeline
conversation = Conversation("Hi there!")
mono_result = nlp(conversation)
self.assertIsInstance(mono_result, Conversation)
conversations = [Conversation("Hi there!"), Conversation("How are you?")]
multi_result = nlp(conversations)
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], Conversation)
# Conversation have been consumed and are not valid anymore
# Inactive conversations passed to the pipeline raise a ValueError
self.assertRaises(ValueError, nlp, conversation)
self.assertRaises(ValueError, nlp, conversations)
for bad_input in self.invalid_inputs:
self.assertRaises(Exception, nlp, bad_input)
self.assertRaises(Exception, nlp, self.invalid_inputs)
@require_torch
@slow
def test_integration_torch_conversation(self):
# When
nlp = pipeline(task="conversational", device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
conversation_2 = Conversation("What's the last book you have read?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
self.assertEqual(len(conversation_2.past_user_inputs), 0)
# When
result = nlp([conversation_1, conversation_2], do_sample=False, max_length=1000)
# Then
self.assertEqual(result, [conversation_1, conversation_2])
self.assertEqual(len(result[0].past_user_inputs), 1)
self.assertEqual(len(result[1].past_user_inputs), 1)
self.assertEqual(len(result[0].generated_responses), 1)
self.assertEqual(len(result[1].generated_responses), 1)
self.assertEqual(result[0].past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result[0].generated_responses[0], "The Big Lebowski")
self.assertEqual(result[1].past_user_inputs[0], "What's the last book you have read?")
self.assertEqual(result[1].generated_responses[0], "The Last Question")
# When
conversation_2.add_user_input("Why do you recommend it?")
result = nlp(conversation_2, do_sample=False, max_length=1000)
# Then
self.assertEqual(result, conversation_2)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Why do you recommend it?")
self.assertEqual(result.generated_responses[1], "It's a good book.")
@require_torch
@slow
def test_integration_torch_conversation_truncated_history(self):
# When
nlp = pipeline(task="conversational", min_length_for_response=24, device=DEFAULT_DEVICE_NUM)
conversation_1 = Conversation("Going to the movies tonight - any suggestions?")
# Then
self.assertEqual(len(conversation_1.past_user_inputs), 0)
# When
result = nlp(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 1)
self.assertEqual(len(result.generated_responses), 1)
self.assertEqual(result.past_user_inputs[0], "Going to the movies tonight - any suggestions?")
self.assertEqual(result.generated_responses[0], "The Big Lebowski")
# When
conversation_1.add_user_input("Is it an action movie?")
result = nlp(conversation_1, do_sample=False, max_length=36)
# Then
self.assertEqual(result, conversation_1)
self.assertEqual(len(result.past_user_inputs), 2)
self.assertEqual(len(result.generated_responses), 2)
self.assertEqual(result.past_user_inputs[1], "Is it an action movie?")
self.assertEqual(result.generated_responses[1], "It's a comedy.")