transformers/tests/test_pipelines_object_detection.py
Nicolas Patry c63fcabfe9
[Large PR] Entire rework of pipelines. (#13308)
* Enabling dataset iteration on pipelines.

Enabling dataset iteration on pipelines.

Unifying parameters under `set_parameters` function.

Small fix.

Last fixes after rebase

Remove print.

Fixing text2text `generate_kwargs`

No more `self.max_length`.

Fixing tf only conversational.

Consistency in start/stop index over TF/PT.

Speeding up drastically on TF (nasty bug where max_length would increase
a ton.)

Adding test for support for non fast tokenizers.

Fixign GPU usage on zero-shot.

Fix working on Tf.

Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

Small cleanup.

Remove all asserts + simple format.

* Fixing audio-classification for large PR.

* Overly explicity null checking.

* Encapsulating GPU/CPU pytorch manipulation directly within `base.py`.

* Removed internal state for parameters of the  pipeline.

Instead of overriding implicitly internal state, we moved
to real named arguments on every `preprocess`, `_forward`,
`postprocess` function.

Instead `_sanitize_parameters` will be used to split all kwargs
of both __init__ and __call__ into the 3 kinds of named parameters.

* Move import warnings.

* Small fixes.

* Quality.

* Another small fix, using the CI to debug faster.

* Last fixes.

* Last fix.

* Small cleanup of tensor moving.

* is not None.

* Adding a bunch of docs + a iteration test.

* Fixing doc style.

* KeyDataset = None guard.

* RRemoving the Cuda test for pipelines (was testing).

* Even more simple iteration test.

* Correct import .

* Long day.

* Fixes in docs.

* [WIP] migrating object detection.

* Fixed the target_size bug.

* Fixup.

* Bad variable name.

* Fixing `ensure_on_device` respects original ModelOutput.
2021-09-10 14:47:48 +02:00

254 lines
11 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_OBJECT_DETECTION_MAPPING,
AutoFeatureExtractor,
AutoModelForObjectDetection,
ObjectDetectionPipeline,
is_vision_available,
pipeline,
)
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_datasets,
require_tf,
require_timm,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@require_vision
@require_timm
@require_torch
@is_pipeline_test
class ObjectDetectionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING
@require_datasets
def run_pipeline_test(self, model, tokenizer, feature_extractor):
object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)
outputs = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
self.assertGreater(len(outputs), 0)
for detected_object in outputs:
self.assertEqual(
detected_object,
{
"score": ANY(float),
"label": ANY(str),
"box": {"xmin": ANY(int), "ymin": ANY(int), "xmax": ANY(int), "ymax": ANY(int)},
},
)
import datasets
dataset = datasets.load_dataset("Narsil/image_dummy", "image", split="test")
batch = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"http://images.cocodataset.org/val2017/000000039769.jpg",
# RGBA
dataset[0]["file"],
# LA
dataset[1]["file"],
# L
dataset[2]["file"],
]
batch_outputs = object_detector(batch, threshold=0.0)
self.assertEqual(len(batch), len(batch_outputs))
for outputs in batch_outputs:
self.assertGreater(len(outputs), 0)
for detected_object in outputs:
self.assertEqual(
detected_object,
{
"score": ANY(float),
"label": ANY(str),
"box": {"xmin": ANY(int), "ymin": ANY(int), "xmax": ANY(int), "ymax": ANY(int)},
},
)
@require_tf
@unittest.skip("Object detection not implemented in TF")
def test_small_model_tf(self):
pass
@require_torch
def test_small_model_pt(self):
model_id = "mishig/tiny-detr-mobilenetsv3"
model = AutoModelForObjectDetection.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)
outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
],
)
outputs = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
],
threshold=0.0,
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
],
[
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
{"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
],
],
)
@require_torch
@slow
def test_large_model_pt(self):
model_id = "facebook/detr-resnet-50"
model = AutoModelForObjectDetection.from_pretrained(model_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)
outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
)
outputs = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
],
)
@require_torch
@slow
def test_integration_torch_object_detection(self):
model_id = "facebook/detr-resnet-50"
object_detector = pipeline("object-detection", model=model_id)
outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
)
outputs = object_detector(
[
"http://images.cocodataset.org/val2017/000000039769.jpg",
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
[
{"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
{"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
{"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
],
)
@require_torch
@slow
def test_threshold(self):
threshold = 0.9985
model_id = "facebook/detr-resnet-50"
object_detector = pipeline("object-detection", model=model_id)
outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold)
self.assertEqual(
nested_simplify(outputs, decimals=4),
[
{"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
{"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
],
)