mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 22:00:09 +06:00

* Enabling dataset iteration on pipelines. Enabling dataset iteration on pipelines. Unifying parameters under `set_parameters` function. Small fix. Last fixes after rebase Remove print. Fixing text2text `generate_kwargs` No more `self.max_length`. Fixing tf only conversational. Consistency in start/stop index over TF/PT. Speeding up drastically on TF (nasty bug where max_length would increase a ton.) Adding test for support for non fast tokenizers. Fixign GPU usage on zero-shot. Fix working on Tf. Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Small cleanup. Remove all asserts + simple format. * Fixing audio-classification for large PR. * Overly explicity null checking. * Encapsulating GPU/CPU pytorch manipulation directly within `base.py`. * Removed internal state for parameters of the pipeline. Instead of overriding implicitly internal state, we moved to real named arguments on every `preprocess`, `_forward`, `postprocess` function. Instead `_sanitize_parameters` will be used to split all kwargs of both __init__ and __call__ into the 3 kinds of named parameters. * Move import warnings. * Small fixes. * Quality. * Another small fix, using the CI to debug faster. * Last fixes. * Last fix. * Small cleanup of tensor moving. * is not None. * Adding a bunch of docs + a iteration test. * Fixing doc style. * KeyDataset = None guard. * RRemoving the Cuda test for pipelines (was testing). * Even more simple iteration test. * Correct import . * Long day. * Fixes in docs. * [WIP] migrating object detection. * Fixed the target_size bug. * Fixup. * Bad variable name. * Fixing `ensure_on_device` respects original ModelOutput.
209 lines
8.6 KiB
Python
209 lines
8.6 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import importlib
|
|
import logging
|
|
import string
|
|
import unittest
|
|
from abc import abstractmethod
|
|
from functools import lru_cache
|
|
from unittest import skipIf
|
|
|
|
from transformers import FEATURE_EXTRACTOR_MAPPING, TOKENIZER_MAPPING, AutoFeatureExtractor, AutoTokenizer, pipeline
|
|
from transformers.testing_utils import is_pipeline_test, require_torch
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_checkpoint_from_architecture(architecture):
|
|
try:
|
|
module = importlib.import_module(architecture.__module__)
|
|
except ImportError:
|
|
logger.error(f"Ignoring architecture {architecture}")
|
|
return
|
|
|
|
if hasattr(module, "_CHECKPOINT_FOR_DOC"):
|
|
return module._CHECKPOINT_FOR_DOC
|
|
else:
|
|
logger.warning(f"Can't retrieve checkpoint from {architecture.__name__}")
|
|
|
|
|
|
def get_tiny_config_from_class(configuration_class):
|
|
if "OpenAIGPT" in configuration_class.__name__:
|
|
# This is the only file that is inconsistent with the naming scheme.
|
|
# Will rename this file if we decide this is the way to go
|
|
return
|
|
|
|
model_type = configuration_class.model_type
|
|
camel_case_model_name = configuration_class.__name__.split("Config")[0]
|
|
|
|
try:
|
|
module = importlib.import_module(f".test_modeling_{model_type.replace('-', '_')}", package="tests")
|
|
model_tester_class = getattr(module, f"{camel_case_model_name}ModelTester", None)
|
|
except (ImportError, AttributeError):
|
|
logger.error(f"No model tester class for {configuration_class.__name__}")
|
|
return
|
|
|
|
if model_tester_class is None:
|
|
logger.warning(f"No model tester class for {configuration_class.__name__}")
|
|
return
|
|
|
|
model_tester = model_tester_class(parent=None)
|
|
|
|
if hasattr(model_tester, "get_pipeline_config"):
|
|
return model_tester.get_pipeline_config()
|
|
elif hasattr(model_tester, "get_config"):
|
|
return model_tester.get_config()
|
|
else:
|
|
logger.warning(f"Model tester {model_tester_class.__name__} has no `get_config()`.")
|
|
|
|
|
|
@lru_cache(maxsize=100)
|
|
def get_tiny_tokenizer_from_checkpoint(checkpoint):
|
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
|
logger.info("Training new from iterator ...")
|
|
vocabulary = string.ascii_letters + string.digits + " "
|
|
tokenizer = tokenizer.train_new_from_iterator(vocabulary, vocab_size=len(vocabulary), show_progress=False)
|
|
logger.info("Trained.")
|
|
return tokenizer
|
|
|
|
|
|
def get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config):
|
|
try:
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(checkpoint)
|
|
except Exception:
|
|
feature_extractor = None
|
|
if hasattr(tiny_config, "image_size") and feature_extractor:
|
|
feature_extractor = feature_extractor.__class__(size=tiny_config.image_size, crop_size=tiny_config.image_size)
|
|
return feature_extractor
|
|
|
|
|
|
class ANY:
|
|
def __init__(self, _type):
|
|
self._type = _type
|
|
|
|
def __eq__(self, other):
|
|
return isinstance(other, self._type)
|
|
|
|
def __repr__(self):
|
|
return f"ANY({self._type.__name__})"
|
|
|
|
|
|
class PipelineTestCaseMeta(type):
|
|
def __new__(mcs, name, bases, dct):
|
|
def gen_test(ModelClass, checkpoint, tiny_config, tokenizer_class, feature_extractor_class):
|
|
@skipIf(tiny_config is None, "TinyConfig does not exist")
|
|
@skipIf(checkpoint is None, "checkpoint does not exist")
|
|
def test(self):
|
|
if ModelClass.__name__.endswith("ForCausalLM"):
|
|
tiny_config.is_encoder_decoder = False
|
|
if ModelClass.__name__.endswith("WithLMHead"):
|
|
tiny_config.is_decoder = True
|
|
model = ModelClass(tiny_config)
|
|
if hasattr(model, "eval"):
|
|
model = model.eval()
|
|
if tokenizer_class is not None:
|
|
try:
|
|
tokenizer = get_tiny_tokenizer_from_checkpoint(checkpoint)
|
|
# XLNet actually defines it as -1.
|
|
if (
|
|
hasattr(model.config, "max_position_embeddings")
|
|
and model.config.max_position_embeddings > 0
|
|
):
|
|
tokenizer.model_max_length = model.config.max_position_embeddings
|
|
# Rust Panic exception are NOT Exception subclass
|
|
# Some test tokenizer contain broken vocabs or custom PreTokenizer, so we
|
|
# provide some default tokenizer and hope for the best.
|
|
except: # noqa: E722
|
|
self.skipTest(f"Ignoring {ModelClass}, cannot create a simple tokenizer")
|
|
else:
|
|
tokenizer = None
|
|
feature_extractor = get_tiny_feature_extractor_from_checkpoint(checkpoint, tiny_config)
|
|
self.run_pipeline_test(model, tokenizer, feature_extractor)
|
|
|
|
return test
|
|
|
|
for prefix, key in [("pt", "model_mapping"), ("tf", "tf_model_mapping")]:
|
|
mapping = dct.get(key, {})
|
|
if mapping:
|
|
for configuration, model_architectures in mapping.items():
|
|
if not isinstance(model_architectures, tuple):
|
|
model_architectures = (model_architectures,)
|
|
|
|
for model_architecture in model_architectures:
|
|
checkpoint = get_checkpoint_from_architecture(model_architecture)
|
|
tiny_config = get_tiny_config_from_class(configuration)
|
|
tokenizer_classes = TOKENIZER_MAPPING.get(configuration, [])
|
|
feature_extractor_class = FEATURE_EXTRACTOR_MAPPING.get(configuration, None)
|
|
feature_extractor_name = (
|
|
feature_extractor_class.__name__ if feature_extractor_class else "nofeature_extractor"
|
|
)
|
|
if not tokenizer_classes:
|
|
# We need to test even if there are no tokenizers.
|
|
tokenizer_classes = [None]
|
|
for tokenizer_class in tokenizer_classes:
|
|
if tokenizer_class is not None:
|
|
tokenizer_name = tokenizer_class.__name__
|
|
else:
|
|
tokenizer_name = "notokenizer"
|
|
|
|
test_name = f"test_{prefix}_{configuration.__name__}_{model_architecture.__name__}_{tokenizer_name}_{feature_extractor_name}"
|
|
|
|
if tokenizer_class is not None or feature_extractor_class is not None:
|
|
dct[test_name] = gen_test(
|
|
model_architecture,
|
|
checkpoint,
|
|
tiny_config,
|
|
tokenizer_class,
|
|
feature_extractor_class,
|
|
)
|
|
|
|
@abstractmethod
|
|
def inner(self):
|
|
raise NotImplementedError("Not implemented test")
|
|
|
|
# Force these 2 methods to exist
|
|
dct["test_small_model_pt"] = dct.get("test_small_model_pt", inner)
|
|
dct["test_small_model_tf"] = dct.get("test_small_model_tf", inner)
|
|
|
|
return type.__new__(mcs, name, bases, dct)
|
|
|
|
|
|
@is_pipeline_test
|
|
class CommonPipelineTest(unittest.TestCase):
|
|
@require_torch
|
|
def test_pipeline_iteration(self):
|
|
from torch.utils.data import Dataset
|
|
|
|
class MyDataset(Dataset):
|
|
data = [
|
|
"This is a test",
|
|
"This restaurant is great",
|
|
"This restaurant is awful",
|
|
]
|
|
|
|
def __len__(self):
|
|
return 3
|
|
|
|
def __getitem__(self, i):
|
|
return self.data[i]
|
|
|
|
text_classifier = pipeline(
|
|
task="text-classification", model="Narsil/tiny-distilbert-sequence-classification", framework="pt"
|
|
)
|
|
dataset = MyDataset()
|
|
for output in text_classifier(dataset):
|
|
self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
|