mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 21:30:07 +06:00
1145 lines
46 KiB
Python
1145 lines
46 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch AIMv2 model."""
|
|
|
|
import inspect
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from typing import Optional, Tuple
|
|
|
|
import numpy as np
|
|
import requests
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from transformers import AIMv2Config, AIMv2TextConfig, AIMv2VisionConfig
|
|
from transformers.testing_utils import (
|
|
require_flash_attn,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_sdpa,
|
|
require_vision,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from transformers.utils import (
|
|
is_torch_available,
|
|
is_torch_bf16_available_on_device,
|
|
is_torch_fp16_available_on_device,
|
|
is_torch_sdpa_available,
|
|
is_vision_available,
|
|
)
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import (
|
|
ModelTesterMixin,
|
|
_config_zero_init,
|
|
floats_tensor,
|
|
ids_tensor,
|
|
is_flaky,
|
|
random_attention_mask,
|
|
)
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import (
|
|
AIMv2ForImageClassification,
|
|
AIMv2Model,
|
|
AIMv2TextModel,
|
|
AIMv2TextModelWithProjection,
|
|
AIMv2VisionModel,
|
|
AIMv2VisionModelWithProjection,
|
|
)
|
|
|
|
|
|
if is_torch_sdpa_available():
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import CLIPProcessor
|
|
|
|
|
|
class AIMv2VisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def get_config(self):
|
|
return AIMv2VisionConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values):
|
|
model = AIMv2VisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_model_with_projection(self, config, pixel_values):
|
|
model = AIMv2VisionModelWithProjection(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
image_size = (self.image_size, self.image_size)
|
|
patch_size = (self.patch_size, self.patch_size)
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
self.parent.assertEqual(result.image_embeds.shape, (self.batch_size, self.projection_dim))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
class AIMv2ModelTesterMixin(ModelTesterMixin):
|
|
"""
|
|
Subclass of ModelTesterMixin with methods specific to testing AIMv2 models.
|
|
The SDPA equivalence test is overridden here because AIMv2 models may have test/vision/text+vision inputs,
|
|
different output logits, and are not supposed to be used or tested with padding_side="left".
|
|
"""
|
|
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# SigLip has one shared cls attr for all models, so we assign both submodels heer
|
|
vision_attn = text_attn = "sdpa" if model._supports_sdpa else "eager"
|
|
|
|
# `None` as it is the requested one which will be assigned to each sub-config
|
|
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
|
|
if hasattr(model_sdpa, "vision_model") and hasattr(model_sdpa, "text_model"):
|
|
self.assertTrue(model_sdpa.vision_model.config._attn_implementation == vision_attn)
|
|
self.assertTrue(model_sdpa.text_model.config._attn_implementation == text_attn)
|
|
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
|
|
self.assertTrue(model_eager.text_model.config._attn_implementation == "eager")
|
|
|
|
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
|
|
self.assertTrue(model_eager.config._attn_implementation == "eager")
|
|
|
|
for name, submodule in model_eager.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
raise ValueError("The eager model should not have SDPA attention layers")
|
|
|
|
has_sdpa = False
|
|
for name, submodule in model_sdpa.named_modules():
|
|
class_name = submodule.__class__.__name__
|
|
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
|
|
has_sdpa = True
|
|
break
|
|
if not has_sdpa and model_sdpa.config.model_type != "falcon":
|
|
raise ValueError("The SDPA model should have SDPA attention layers")
|
|
|
|
def test_eager_matches_sdpa_inference(
|
|
self,
|
|
torch_dtype: str,
|
|
use_attention_mask_options: Tuple[Optional[str], ...] = (None, "left", "right"),
|
|
logit_keys: Tuple[str, ...] = ("logits_per_image", "logits_per_text", "image_embeds", "text_embeds"),
|
|
):
|
|
if not self.all_model_classes[0]._supports_sdpa:
|
|
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
|
|
|
|
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
|
|
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
|
|
|
|
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
|
|
self.skipTest(
|
|
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
|
|
)
|
|
|
|
# Convert to torch dtype
|
|
dtypes = {
|
|
"float16": torch.float16,
|
|
"bfloat16": torch.bfloat16,
|
|
"float32": torch.float32,
|
|
}
|
|
torch_dtype = dtypes[torch_dtype]
|
|
|
|
atols = {
|
|
torch.float32: 1e-5,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
rtols = {
|
|
torch.float32: 1e-4,
|
|
torch.bfloat16: 3e-2,
|
|
torch.float16: 5e-3,
|
|
}
|
|
|
|
atol = atols[torch_dtype]
|
|
rtol = rtols[torch_dtype]
|
|
|
|
def get_mean_reldiff(msg, current_case, x, ref, atol, rtol):
|
|
return f"{msg} {current_case}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
|
|
|
|
for model_class in self.all_model_classes:
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
# Load the model with SDPA
|
|
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
|
|
model_sdpa = model_sdpa.eval().to(torch_device)
|
|
|
|
# Load model with eager attention
|
|
model_eager = model_class.from_pretrained(
|
|
tmpdirname,
|
|
torch_dtype=torch_dtype,
|
|
attn_implementation="eager",
|
|
)
|
|
model_eager = model_eager.eval().to(torch_device)
|
|
|
|
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving the model each time,
|
|
# but it would be nicer to have an efficient way to use parameterized.expand
|
|
cases = [
|
|
(use_mask, output_attentions, sdpa_backend, batch_size)
|
|
for use_mask in use_attention_mask_options
|
|
for output_attentions in [True, False]
|
|
for sdpa_backend in [
|
|
[SDPBackend.MATH],
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.MATH],
|
|
]
|
|
for batch_size in [1, 5]
|
|
]
|
|
fail_cases = []
|
|
|
|
for use_mask, output_attentions, sdpa_backend, batch_size in cases:
|
|
processed_inputs = inputs_dict.copy()
|
|
|
|
# convert to torch_dtype
|
|
if "pixel_values" in processed_inputs:
|
|
processed_inputs["pixel_values"] = processed_inputs["pixel_values"].to(torch_dtype)
|
|
|
|
# slice for different batch sizes
|
|
for key in ["pixel_values", "input_ids", "attention_mask"]:
|
|
if key in processed_inputs:
|
|
processed_inputs[key] = processed_inputs[key][:batch_size]
|
|
|
|
# set attention mask with left padding
|
|
if not use_mask:
|
|
processed_inputs.pop("attention_mask", None)
|
|
elif use_mask == "left":
|
|
dummy_attention_mask = processed_inputs["attention_mask"]
|
|
dummy_attention_mask[:] = 1
|
|
dummy_attention_mask[:, :1] = 0
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
elif use_mask == "right":
|
|
dummy_attention_mask = processed_inputs["attention_mask"]
|
|
dummy_attention_mask[:] = 1
|
|
dummy_attention_mask[:, -1:] = 0
|
|
processed_inputs["attention_mask"] = dummy_attention_mask
|
|
else:
|
|
raise ValueError(f"Invalid value for use_mask={use_mask}")
|
|
|
|
processed_inputs["output_attentions"] = output_attentions
|
|
processed_inputs["output_hidden_states"] = True
|
|
|
|
current_case = f"use_mask={use_mask}, batch_size={batch_size}, sdpa_backend={sdpa_backend}"
|
|
|
|
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
|
|
|
|
with torch.no_grad():
|
|
try:
|
|
with sdpa_kernel(sdpa_backend):
|
|
outputs_eager = model_eager(**prepared_inputs)
|
|
outputs_sdpa = model_sdpa(**prepared_inputs)
|
|
except Exception as e:
|
|
fail_cases.append(f"{current_case}: {e}")
|
|
continue
|
|
|
|
keys = set(logit_keys) & set(outputs_eager.keys())
|
|
self.assertTrue(
|
|
keys, f"Keys {logit_keys} not found in outputs. Available keys: {outputs_eager.keys()}"
|
|
)
|
|
|
|
for key in keys:
|
|
try:
|
|
eager_logits = outputs_eager[key]
|
|
sdpa_logits = outputs_sdpa[key]
|
|
except KeyError:
|
|
raise KeyError(f"Key {key} not found in outputs. Available keys: {outputs_eager.keys()}")
|
|
|
|
if "hidden_state" in key and use_mask == "left":
|
|
eager_logits = eager_logits[:, 1:]
|
|
sdpa_logits = sdpa_logits[:, 1:]
|
|
elif "hidden_state" in key and use_mask == "right":
|
|
eager_logits = eager_logits[:, :-1]
|
|
sdpa_logits = sdpa_logits[:, :-1]
|
|
|
|
is_close = torch.allclose(eager_logits, sdpa_logits, atol=atol, rtol=rtol)
|
|
if not is_close:
|
|
fail_cases.append(get_mean_reldiff(key, current_case, sdpa_logits, eager_logits, atol, rtol))
|
|
|
|
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
|
|
|
|
|
|
@require_torch
|
|
class AIMv2VisionModelTest(AIMv2ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as AIMv2 does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (AIMv2VisionModel, AIMv2VisionModelWithProjection) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = AIMv2VisionModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=AIMv2VisionConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="AIMv2 does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_projection(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
|
|
|
|
@unittest.skip
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2VisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2VisionModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2VisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_model_with_projection_from_pretrained(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2VisionModelWithProjection.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertTrue(hasattr(model, "visual_projection"))
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("last_hidden_state", "pooler_output", "image_embeds"),
|
|
use_attention_mask_options=(None,),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
class AIMv2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=12,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
dropout=0.1,
|
|
attention_dropout=0.1,
|
|
max_position_embeddings=512,
|
|
initializer_range=0.02,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.projection_dim = projection_dim
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.dropout = dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
if input_mask is not None:
|
|
batch_size, seq_length = input_mask.shape
|
|
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
|
|
for batch_idx, start_index in enumerate(rnd_start_indices):
|
|
input_mask[batch_idx, :start_index] = 1
|
|
input_mask[batch_idx, start_index:] = 0
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, input_mask
|
|
|
|
def get_config(self):
|
|
return AIMv2TextConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
projection_dim=self.projection_dim,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
dropout=self.dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask):
|
|
model = AIMv2TextModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_model_with_projection(self, config, input_ids, input_mask):
|
|
model = AIMv2TextModelWithProjection(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.text_embeds.shape, (self.batch_size, self.projection_dim))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, input_mask = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class AIMv2TextModelTest(AIMv2ModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (AIMv2TextModel, AIMv2TextModelWithProjection) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
model_split_percents = [0.5, 0.8, 0.9]
|
|
|
|
def setUp(self):
|
|
self.model_tester = AIMv2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=AIMv2TextConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_with_projection(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_projection(*config_and_inputs)
|
|
|
|
@unittest.skip
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2 does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2TextModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_from_base(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2TextModel has no base class and is not available in MODEL_MAPPING")
|
|
def test_save_load_fast_init_to_base(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2TextModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@slow
|
|
def test_model_with_projection_from_pretrained(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2TextModelWithProjection.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
self.assertTrue(hasattr(model, "text_projection"))
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("last_hidden_state", "pooler_output", "text_embeds"),
|
|
use_attention_mask_options=(None, "right"), # "left" is not supported for text model
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
self.skipTest(reason="AIMv2TextModel has two attention masks: `causal_attention_mask` and `attention_mask`")
|
|
|
|
|
|
class AIMv2ModelTester:
|
|
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
|
|
if text_kwargs is None:
|
|
text_kwargs = {}
|
|
if vision_kwargs is None:
|
|
vision_kwargs = {}
|
|
|
|
self.parent = parent
|
|
self.text_model_tester = AIMv2TextModelTester(parent, **text_kwargs)
|
|
self.vision_model_tester = AIMv2VisionModelTester(parent, **vision_kwargs)
|
|
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
|
|
self.is_training = is_training
|
|
|
|
def prepare_config_and_inputs(self):
|
|
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
|
|
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, attention_mask, pixel_values
|
|
|
|
def get_config(self):
|
|
return AIMv2Config.from_text_vision_configs(
|
|
self.text_model_tester.get_config(), self.vision_model_tester.get_config(), projection_dim=64
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
|
|
model = AIMv2Model(config).to(torch_device).eval()
|
|
with torch.no_grad():
|
|
result = model(input_ids, pixel_values, attention_mask)
|
|
self.parent.assertEqual(
|
|
result.logits_per_image.shape, (self.vision_model_tester.batch_size, self.text_model_tester.batch_size)
|
|
)
|
|
self.parent.assertEqual(
|
|
result.logits_per_text.shape, (self.text_model_tester.batch_size, self.vision_model_tester.batch_size)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, attention_mask, pixel_values = config_and_inputs
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
"pixel_values": pixel_values,
|
|
"return_loss": True,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class AIMv2ModelTest(AIMv2ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (AIMv2Model,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = AIMv2ModelTester(self)
|
|
common_properties = ["projection_dim", "logit_scale_init_value"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=AIMv2Config, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="Hidden_states is tested in individual model tests")
|
|
def test_hidden_states_output(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Retain_grad is tested in individual model tests")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2Model does not have input/output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
# override as the `logit_scale` parameter initilization is different for AIMv2
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
# check if `logit_scale` is initilized as per the original implementation
|
|
if name == "logit_scale":
|
|
self.assertAlmostEqual(
|
|
param.data.item(),
|
|
np.log(1 / 0.07),
|
|
delta=1e-3,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def _create_and_check_torchscript(self, config, inputs_dict):
|
|
if not self.test_torchscript:
|
|
self.skipTest(reason="test_torchscript is set to False")
|
|
|
|
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
|
|
configs_no_init.torchscript = True
|
|
configs_no_init.return_dict = False
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
try:
|
|
input_ids = inputs_dict["input_ids"]
|
|
pixel_values = inputs_dict["pixel_values"] # AIMv2 needs pixel_values
|
|
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
|
|
except RuntimeError:
|
|
self.fail("Couldn't trace module.")
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
|
|
|
|
try:
|
|
torch.jit.save(traced_model, pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't save module.")
|
|
|
|
try:
|
|
loaded_model = torch.jit.load(pt_file_name)
|
|
except Exception:
|
|
self.fail("Couldn't load module.")
|
|
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
loaded_model.to(torch_device)
|
|
loaded_model.eval()
|
|
|
|
model_state_dict = model.state_dict()
|
|
loaded_model_state_dict = loaded_model.state_dict()
|
|
|
|
non_persistent_buffers = {}
|
|
for key in loaded_model_state_dict.keys():
|
|
if key not in model_state_dict.keys():
|
|
non_persistent_buffers[key] = loaded_model_state_dict[key]
|
|
|
|
loaded_model_state_dict = {
|
|
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
|
|
}
|
|
|
|
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
|
|
|
|
model_buffers = list(model.buffers())
|
|
for non_persistent_buffer in non_persistent_buffers.values():
|
|
found_buffer = False
|
|
for i, model_buffer in enumerate(model_buffers):
|
|
if torch.equal(non_persistent_buffer, model_buffer):
|
|
found_buffer = True
|
|
break
|
|
|
|
self.assertTrue(found_buffer)
|
|
model_buffers.pop(i)
|
|
|
|
models_equal = True
|
|
for layer_name, p1 in model_state_dict.items():
|
|
p2 = loaded_model_state_dict[layer_name]
|
|
if p1.data.ne(p2.data).sum() > 0:
|
|
models_equal = False
|
|
|
|
self.assertTrue(models_equal)
|
|
|
|
def test_load_vision_text_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
# Save AIMv2Config and check if we can load AIMv2VisionConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
vision_config = AIMv2VisionConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
|
|
|
|
# Save AIMv2Config and check if we can load AIMv2TextConfig from it
|
|
with tempfile.TemporaryDirectory() as tmp_dir_name:
|
|
config.save_pretrained(tmp_dir_name)
|
|
text_config = AIMv2TextConfig.from_pretrained(tmp_dir_name)
|
|
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2Model.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("logits_per_image", "logits_per_text"),
|
|
use_attention_mask_options=(None, "right"), # "left" is not supported for text model
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_on_flash(self):
|
|
self.skipTest(reason="AIMv2 text tower has two attention masks: `causal_attention_mask` and `attention_mask`")
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_compile_dynamic(self):
|
|
self.skipTest(reason="AIMv2 model can't be compiled dynamic, error in aimv2_loss`")
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
@slow
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
|
|
model.to(torch_device)
|
|
|
|
dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
|
|
dummy_input_ids = inputs_dict["input_ids"]
|
|
|
|
outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(
|
|
pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_image, outputs_fa.logits_per_image, atol=4e-2, rtol=4e-2),
|
|
f"Image logits max diff: {torch.max(torch.abs(outputs.logits_per_image - outputs_fa.logits_per_image))}",
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(outputs.logits_per_text, outputs_fa.logits_per_text, atol=4e-2, rtol=4e-2),
|
|
f"Text logits max diff: {torch.max(torch.abs(outputs.logits_per_text - outputs_fa.logits_per_text))}",
|
|
)
|
|
|
|
@require_flash_attn
|
|
@require_torch_gpu
|
|
@mark.flash_attn_test
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
for model_class in self.all_model_classes:
|
|
if not model_class._supports_flash_attn_2:
|
|
self.skipTest(f"{model_class.__name__} does not support Flash Attention 2")
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
model = model_class(config)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
model_fa = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
|
|
)
|
|
model_fa.to(torch_device)
|
|
|
|
model = model_class.from_pretrained(
|
|
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="eager"
|
|
)
|
|
model.to(torch_device)
|
|
|
|
dummy_pixel_values = inputs_dict["pixel_values"].to(torch.bfloat16)
|
|
dummy_input_ids = inputs_dict["input_ids"]
|
|
dummy_pixel_mask = inputs_dict["attention_mask"]
|
|
|
|
# right padding
|
|
dummy_pixel_mask[:] = 1
|
|
dummy_pixel_mask[:, -1:] = 0
|
|
|
|
outputs = model(pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True)
|
|
outputs_fa = model_fa(
|
|
pixel_values=dummy_pixel_values, input_ids=dummy_input_ids, output_hidden_states=True
|
|
)
|
|
|
|
logits_per_image_eager = outputs.logits_per_image[:, :-1]
|
|
logits_per_text_eager = outputs.logits_per_text[:, :-1]
|
|
|
|
logits_per_image_sdpa = outputs_fa.logits_per_image[:, :-1]
|
|
logits_per_text_sdpa = outputs_fa.logits_per_text[:, :-1]
|
|
|
|
self.assertTrue(
|
|
torch.allclose(logits_per_image_eager, logits_per_image_sdpa, atol=4e-2, rtol=4e-2),
|
|
f"Image logits max diff: {torch.max(torch.abs(logits_per_image_eager - logits_per_image_sdpa))}",
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(logits_per_text_eager, logits_per_text_sdpa, atol=4e-2, rtol=4e-2),
|
|
f"Text logits max diff: {torch.max(torch.abs(logits_per_text_eager - logits_per_text_sdpa))}",
|
|
)
|
|
|
|
|
|
class AIMv2ForImageClassificationModelTester(AIMv2ModelTester):
|
|
def __init__(self, parent):
|
|
super().__init__(parent)
|
|
self.batch_size = self.vision_model_tester.batch_size
|
|
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
|
|
self.hidden_size = self.vision_model_tester.hidden_size
|
|
self.seq_length = self.vision_model_tester.seq_length
|
|
|
|
def prepare_config_and_inputs(self):
|
|
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class AIMv2ForImageClassificationModelTest(AIMv2ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (AIMv2ForImageClassification,) if is_torch_available() else ()
|
|
pipeline_model_mapping = {"image-classification": AIMv2ForImageClassification} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_head_masking = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_attention_outputs = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = AIMv2ForImageClassificationModelTester(self)
|
|
|
|
@unittest.skip(reason="AIMv2ForImageClassification does not support inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2ForImageClassification does not support inputs_embeds")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2ForImageClassification does not support gradient checkpointing yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="AIMv2 uses the same initialization scheme as the Flax original implementation")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
|
|
@require_torch_sdpa
|
|
@slow
|
|
@is_flaky()
|
|
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
|
|
super().test_eager_matches_sdpa_inference(
|
|
torch_dtype=torch_dtype,
|
|
logit_keys=("logits",),
|
|
use_attention_mask_options=(None,),
|
|
)
|
|
|
|
@require_torch_sdpa
|
|
def test_sdpa_can_dispatch_composite_models(self):
|
|
super().test_sdpa_can_dispatch_composite_models()
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
im = Image.open(requests.get(url, stream=True).raw)
|
|
return im
|
|
|
|
|
|
@require_vision
|
|
@require_torch
|
|
class AIMv2ModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference(self):
|
|
model_name = "apple/aimv2-large-patch14-224"
|
|
model = AIMv2Model.from_pretrained(model_name).to(torch_device)
|
|
processor = CLIPProcessor.from_pretrained(model_name)
|
|
|
|
image = prepare_img()
|
|
inputs = processor(
|
|
text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt"
|
|
).to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
self.assertEqual(
|
|
outputs.logits_per_image.shape,
|
|
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
|
|
)
|
|
self.assertEqual(
|
|
outputs.logits_per_text.shape,
|
|
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
|
|
)
|
|
|
|
expected_logits = torch.tensor([[24.5701, 19.3049]], device=torch_device)
|
|
|
|
torch.testing.assert_close(outputs.logits_per_image, expected_logits, rtol=1e-3, atol=1e-3)
|
|
|
|
@slow
|
|
def test_inference_interpolate_pos_encoding(self):
|
|
# AIMv2 models have an `interpolate_pos_encoding` argument in their forward method,
|
|
# allowing to interpolate the pre-trained position embeddings in order to use
|
|
# the model on higher resolutions. The DINO model by Facebook AI leverages this
|
|
# to visualize self-attention on higher resolution images.
|
|
model = AIMv2Model.from_pretrained("apple/aimv2-large-patch14-224").to(torch_device)
|
|
|
|
processor = CLIPProcessor.from_pretrained(
|
|
"apple/aimv2-large-patch14-224",
|
|
size={"height": 180, "width": 180},
|
|
crop_size={"height": 180, "width": 180},
|
|
)
|
|
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
inputs = processor(text="what's in the image", images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# interpolate_pos_encodiung false should return value error
|
|
with self.assertRaises(ValueError, msg="doesn't match model"):
|
|
with torch.no_grad():
|
|
model(**inputs, interpolate_pos_encoding=False)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs, interpolate_pos_encoding=True)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 26, 768))
|
|
|
|
self.assertEqual(outputs.vision_model_output.last_hidden_state.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[-0.1538, 0.0322, -0.3235], [0.2893, 0.1135, -0.5708], [0.0461, 0.1540, -0.6018]]
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(
|
|
outputs.vision_model_output.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4
|
|
)
|