mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
575 lines
23 KiB
Python
575 lines
23 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT finetuning runner."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import csv
|
|
import os
|
|
# import modeling_pytorch
|
|
# import optimization
|
|
import tokenization_pytorch
|
|
import torch
|
|
|
|
import logging
|
|
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt = '%m/%d/%Y %H:%M:%S',
|
|
level = logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
## Required parameters
|
|
parser.add_argument("--data_dir",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--bert_config_file",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The config json file corresponding to the pre-trained BERT model. \n"
|
|
"This specifies the model architecture.")
|
|
parser.add_argument("--task_name",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The name of the task to train.")
|
|
parser.add_argument("--vocab_file",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The vocabulary file that the BERT model was trained on.")
|
|
parser.add_argument("--output_dir",
|
|
default = None,
|
|
type = str,
|
|
required = True,
|
|
help = "The output directory where the model checkpoints will be written.")
|
|
|
|
## Other parameters
|
|
parser.add_argument("--init_checkpoint",
|
|
default = None,
|
|
type = str,
|
|
help = "Initial checkpoint (usually from a pre-trained BERT model).")
|
|
parser.add_argument("--do_lower_case",
|
|
default = True,
|
|
type = bool,
|
|
help = "Whether to lower case the input text. Should be True for uncased models and False for cased models.")
|
|
parser.add_argument("--max_seq_length",
|
|
default = 128,
|
|
type = int,
|
|
help = "The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, and sequences shorter \n"
|
|
"than this will be padded.")
|
|
parser.add_argument("--do_train",
|
|
default = False,
|
|
type = bool,
|
|
help = "Whether to run training.")
|
|
parser.add_argument("--do_eval",
|
|
default = False,
|
|
type = bool,
|
|
help = "Whether to run eval on the dev set.")
|
|
parser.add_argument("--train_batch_size",
|
|
default = 32,
|
|
type = int,
|
|
help = "Total batch size for training.")
|
|
parser.add_argument("--eval_batch_size",
|
|
default = 8,
|
|
type = int,
|
|
help = "Total batch size for eval.")
|
|
parser.add_argument("--learning_rate",
|
|
default = 5e-5,
|
|
type = float,
|
|
help = "The initial learning rate for Adam.")
|
|
parser.add_argument("--num_train_epochs",
|
|
default = 3.0,
|
|
type = float,
|
|
help = "Total number of training epochs to perform.")
|
|
parser.add_argument("--warmup_proportion",
|
|
default = 0.1,
|
|
type = float,
|
|
help = "Proportion of training to perform linear learning rate warmup for. "
|
|
"E.g., 0.1 = 10%% of training.")
|
|
parser.add_argument("--save_checkpoints_steps",
|
|
default = 1000,
|
|
type = int,
|
|
help = "How often to save the model checkpoint.")
|
|
parser.add_argument("--iterations_per_loop",
|
|
default = 1000,
|
|
type = int,
|
|
help = "How many steps to make in each estimator call.")
|
|
|
|
parser.add_argument("--use_gpu",
|
|
default = True,
|
|
type = bool,
|
|
help = "Whether to use GPU")
|
|
### BEGIN - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ###
|
|
parser.add_argument("--use_tpu",
|
|
default = False,
|
|
type = bool,
|
|
help = "Whether to use TPU or GPU/CPU.")
|
|
parser.add_argument("--tpu_name",
|
|
default = None,
|
|
type = str,
|
|
help = "The Cloud TPU to use for training. This should be either the name "
|
|
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
|
|
"url.")
|
|
parser.add_argument("--tpu_zone",
|
|
default = None,
|
|
type = str,
|
|
help = "[Optional] GCE zone where the Cloud TPU is located in. If not "
|
|
"specified, we will attempt to automatically detect the GCE project from "
|
|
"metadata.")
|
|
parser.add_argument("--gcp_project",
|
|
default = None,
|
|
type = str,
|
|
help = "[Optional] Project name for the Cloud TPU-enabled project. If not "
|
|
"specified, we will attempt to automatically detect the GCE project from "
|
|
"metadata.")
|
|
parser.add_argument("--master",
|
|
default = None,
|
|
type = str,
|
|
help = "[Optional] TensorFlow master URL.")
|
|
parser.add_argument("--num_tpu_cores",
|
|
default = 8,
|
|
type = int,
|
|
help = "Only used if `use_tpu` is True. Total number of TPU cores to use.")
|
|
### END - TO DELETE EVENTUALLY --> NO SENSE IN PYTORCH ###
|
|
|
|
args = parser.parse_args()
|
|
|
|
class InputExample(object):
|
|
"""A single training/test example for simple sequence classification."""
|
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None):
|
|
"""Constructs a InputExample.
|
|
|
|
Args:
|
|
guid: Unique id for the example.
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
sequence tasks, only this sequence must be specified.
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
Only must be specified for sequence pair tasks.
|
|
label: (Optional) string. The label of the example. This should be
|
|
specified for train and dev examples, but not for test examples.
|
|
"""
|
|
self.guid = guid
|
|
self.text_a = text_a
|
|
self.text_b = text_b
|
|
self.label = label
|
|
|
|
|
|
class InputFeatures(object):
|
|
"""A single set of features of data."""
|
|
|
|
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
|
self.input_ids = input_ids
|
|
self.input_mask = input_mask
|
|
self.segment_ids = segment_ids
|
|
self.label_id = label_id
|
|
|
|
|
|
class DataProcessor(object):
|
|
"""Base class for data converters for sequence classification data sets."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the train set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""Gets a collection of `InputExample`s for the dev set."""
|
|
raise NotImplementedError()
|
|
|
|
def get_labels(self):
|
|
"""Gets the list of labels for this data set."""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def _read_tsv(cls, input_file, quotechar=None):
|
|
"""Reads a tab separated value file."""
|
|
with open(input_file, "r") as f:
|
|
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
|
|
lines = []
|
|
for line in reader:
|
|
lines.append(line)
|
|
return lines
|
|
|
|
|
|
class MnliProcessor(DataProcessor):
|
|
"""Processor for the MultiNLI data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
|
|
"dev_matched")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["contradiction", "entailment", "neutral"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
if i == 0:
|
|
continue
|
|
guid = "%s-%s" % (set_type, tokenization_pytorch.convert_to_unicode(line[0]))
|
|
text_a = tokenization_pytorch.convert_to_unicode(line[8])
|
|
text_b = tokenization_pytorch.convert_to_unicode(line[9])
|
|
label = tokenization_pytorch.convert_to_unicode(line[-1])
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
return examples
|
|
|
|
|
|
class ColaProcessor(DataProcessor):
|
|
"""Processor for the CoLA data set (GLUE version)."""
|
|
|
|
def get_train_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
"""See base class."""
|
|
return self._create_examples(
|
|
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
|
|
|
|
def get_labels(self):
|
|
"""See base class."""
|
|
return ["0", "1"]
|
|
|
|
def _create_examples(self, lines, set_type):
|
|
"""Creates examples for the training and dev sets."""
|
|
examples = []
|
|
for (i, line) in enumerate(lines):
|
|
guid = "%s-%s" % (set_type, i)
|
|
text_a = tokenization_pytorch.convert_to_unicode(line[3])
|
|
label = tokenization_pytorch.convert_to_unicode(line[1])
|
|
examples.append(
|
|
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
|
|
return examples
|
|
|
|
|
|
def convert_examples_to_features(examples, label_list, max_seq_length,
|
|
tokenizer):
|
|
"""Loads a data file into a list of `InputBatch`s."""
|
|
|
|
label_map = {}
|
|
for (i, label) in enumerate(label_list):
|
|
label_map[label] = i
|
|
|
|
features = []
|
|
for (ex_index, example) in enumerate(examples):
|
|
tokens_a = tokenizer.tokenize(example.text_a)
|
|
|
|
tokens_b = None
|
|
if example.text_b:
|
|
tokens_b = tokenizer.tokenize(example.text_b)
|
|
|
|
if tokens_b:
|
|
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
|
# length is less than the specified length.
|
|
# Account for [CLS], [SEP], [SEP] with "- 3"
|
|
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
|
else:
|
|
# Account for [CLS] and [SEP] with "- 2"
|
|
if len(tokens_a) > max_seq_length - 2:
|
|
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
|
|
|
# The convention in BERT is:
|
|
# (a) For sequence pairs:
|
|
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
|
# (b) For single sequences:
|
|
# tokens: [CLS] the dog is hairy . [SEP]
|
|
# type_ids: 0 0 0 0 0 0 0
|
|
#
|
|
# Where "type_ids" are used to indicate whether this is the first
|
|
# sequence or the second sequence. The embedding vectors for `type=0` and
|
|
# `type=1` were learned during pre-training and are added to the wordpiece
|
|
# embedding vector (and position vector). This is not *strictly* necessary
|
|
# since the [SEP] token unambigiously separates the sequences, but it makes
|
|
# it easier for the model to learn the concept of sequences.
|
|
#
|
|
# For classification tasks, the first vector (corresponding to [CLS]) is
|
|
# used as as the "sentence vector". Note that this only makes sense because
|
|
# the entire model is fine-tuned.
|
|
tokens = []
|
|
segment_ids = []
|
|
tokens.append("[CLS]")
|
|
segment_ids.append(0)
|
|
for token in tokens_a:
|
|
tokens.append(token)
|
|
segment_ids.append(0)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(0)
|
|
|
|
if tokens_b:
|
|
for token in tokens_b:
|
|
tokens.append(token)
|
|
segment_ids.append(1)
|
|
tokens.append("[SEP]")
|
|
segment_ids.append(1)
|
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
|
# tokens are attended to.
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
# Zero-pad up to the sequence length.
|
|
while len(input_ids) < max_seq_length:
|
|
input_ids.append(0)
|
|
input_mask.append(0)
|
|
segment_ids.append(0)
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
assert len(input_mask) == max_seq_length
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
label_id = label_map[example.label]
|
|
if ex_index < 5:
|
|
logger.info("*** Example ***")
|
|
logger.info("guid: %s" % (example.guid))
|
|
logger.info("tokens: %s" % " ".join(
|
|
[tokenization_pytorch.printable_text(x) for x in tokens]))
|
|
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
|
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
|
logger.info(
|
|
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
|
logger.info("label: %s (id = %d)" % (example.label, label_id))
|
|
|
|
features.append(
|
|
InputFeatures(
|
|
input_ids=input_ids,
|
|
input_mask=input_mask,
|
|
segment_ids=segment_ids,
|
|
label_id=label_id))
|
|
return features
|
|
|
|
|
|
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
|
|
"""Truncates a sequence pair in place to the maximum length."""
|
|
|
|
# This is a simple heuristic which will always truncate the longer sequence
|
|
# one token at a time. This makes more sense than truncating an equal percent
|
|
# of tokens from each, since if one sequence is very short then each token
|
|
# that's truncated likely contains more information than a longer sequence.
|
|
while True:
|
|
total_length = len(tokens_a) + len(tokens_b)
|
|
if total_length <= max_length:
|
|
break
|
|
if len(tokens_a) > len(tokens_b):
|
|
tokens_a.pop()
|
|
else:
|
|
tokens_b.pop()
|
|
|
|
|
|
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
|
|
labels, num_labels, use_one_hot_embeddings):
|
|
raise NotImplementedError()
|
|
|
|
|
|
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
|
|
num_train_steps, num_warmup_steps,
|
|
use_one_hot_embeddings):
|
|
raise NotImplementedError()
|
|
### ATTENTION - I removed the `use_tpu` argument
|
|
|
|
|
|
def input_fn_builder(features, seq_length, is_training, drop_remainder):
|
|
"""Creates an `input_fn` closure to be passed to TPUEstimator.""" ### ATTENTION - To rewrite ###
|
|
|
|
all_input_ids = []
|
|
all_input_mask = []
|
|
all_segment_ids = []
|
|
all_label_ids = []
|
|
|
|
for feature in features:
|
|
all_input_ids.append(feature.input_ids)
|
|
all_input_mask.append(feature.input_mask)
|
|
all_segment_ids.append(feature.segment_ids)
|
|
all_label_ids.append(feature.label_id)
|
|
|
|
def input_fn(params):
|
|
"""The actual input function."""
|
|
batch_size = params["batch_size"]
|
|
|
|
num_examples = len(features)
|
|
|
|
device = torch.device("cuda") if args.use_gpu else torch.device("cpu")
|
|
d = {"input_ids":
|
|
torch.IntTensor(all_input_ids, device = device), #Requires_grad=False by default
|
|
"input_mask":
|
|
torch.IntTensor(all_input_mask, device = device),
|
|
"segment_ids":
|
|
torch.IntTensor(all_segment_ids, device = device),
|
|
"label_ids":
|
|
torch.IntTensor(all_label_ids, device = device)
|
|
}
|
|
|
|
if is_training:
|
|
d = d.repeat()
|
|
d = d.shuffle(buffer_size=100)
|
|
|
|
d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder)
|
|
return d
|
|
|
|
return input_fn
|
|
|
|
|
|
def main(_):
|
|
processors = {
|
|
"cola": ColaProcessor,
|
|
"mnli": MnliProcessor,
|
|
"mrpc": MrpcProcessor,
|
|
}
|
|
|
|
if not args.do_train and not args.do_eval:
|
|
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
|
|
|
|
bert_config = modeling.BertConfig.from_json_file(args.bert_config_file)
|
|
|
|
if args.max_seq_length > bert_config.max_position_embeddings:
|
|
raise ValueError(
|
|
"Cannot use sequence length %d because the BERT model "
|
|
"was only trained up to sequence length %d" %
|
|
(args.max_seq_length, bert_config.max_position_embeddings))
|
|
|
|
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ConfigurationError(f"Output directory ({args.output_dir}) already exists and is "
|
|
f"not empty.")
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
task_name = args.task_name.lower()
|
|
|
|
if task_name not in processors:
|
|
raise ValueError("Task not found: %s" % (task_name))
|
|
|
|
processor = processors[task_name]()
|
|
|
|
label_list = processor.get_labels()
|
|
|
|
tokenizer = tokenization.FullTokenizer(
|
|
vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
|
|
|
|
# tpu_cluster_resolver = None
|
|
# if FLAGS.use_tpu and FLAGS.tpu_name:
|
|
# tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
|
|
# FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
|
|
|
|
# is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
|
|
# run_config = tf.contrib.tpu.RunConfig(
|
|
# cluster=tpu_cluster_resolver,
|
|
# master=FLAGS.master,
|
|
# model_dir=FLAGS.output_dir,
|
|
# save_checkpoints_steps=FLAGS.save_checkpoints_steps,
|
|
# tpu_config=tf.contrib.tpu.TPUConfig(
|
|
# iterations_per_loop=FLAGS.iterations_per_loop,
|
|
# num_shards=FLAGS.num_tpu_cores,
|
|
# per_host_input_for_training=is_per_host))
|
|
|
|
train_examples = None
|
|
num_train_steps = None
|
|
num_warmup_steps = None
|
|
if args.do_train:
|
|
train_examples = processor.get_train_examples(args.data_dir)
|
|
num_train_steps = int(
|
|
len(train_examples) / args.train_batch_size * args.num_train_epochs)
|
|
num_warmup_steps = int(num_train_steps * args.warmup_proportion)
|
|
|
|
model_fn = model_fn_builder(
|
|
bert_config=bert_config,
|
|
num_labels=len(label_list),
|
|
init_checkpoint=args.init_checkpoint,
|
|
learning_rate=args.learning_rate,
|
|
num_train_steps=num_train_steps,
|
|
num_warmup_steps=num_warmup_steps,
|
|
use_gpu=args.use_gpu,
|
|
use_one_hot_embeddings=args.use_gpu) ### TO DO - to check when model_fn is written)
|
|
|
|
# If TPU is not available, this will fall back to normal Estimator on CPU
|
|
# or GPU. - TO DO
|
|
for batch in
|
|
estimator = tf.contrib.tpu.TPUEstimator(
|
|
use_tpu=args.use_tpu,
|
|
model_fn=model_fn,
|
|
config=run_config,
|
|
train_batch_size=args.train_batch_size,
|
|
eval_batch_size=args.eval_batch_size)
|
|
|
|
if args.do_train:
|
|
train_features = convert_examples_to_features(
|
|
train_examples, label_list, args.max_seq_length, tokenizer)
|
|
logger.info("***** Running training *****")
|
|
logger.info(" Num examples = %d", len(train_examples))
|
|
logger.info(" Batch size = %d", args.train_batch_size)
|
|
logger.info(" Num steps = %d", num_train_steps)
|
|
train_input_fn = input_fn_builder(
|
|
features=train_features,
|
|
seq_length=args.max_seq_length,
|
|
is_training=True,
|
|
drop_remainder=True)
|
|
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
|
|
|
|
if args.do_eval:
|
|
eval_examples = processor.get_dev_examples(args.data_dir)
|
|
eval_features = convert_examples_to_features(
|
|
eval_examples, label_list, args.max_seq_length, tokenizer)
|
|
|
|
tf.logging.info("***** Running evaluation *****")
|
|
tf.logging.info(" Num examples = %d", len(eval_examples))
|
|
tf.logging.info(" Batch size = %d", args.eval_batch_size)
|
|
|
|
# This tells the estimator to run through the entire set.
|
|
eval_steps = None
|
|
# However, if running eval on the TPU, you will need to specify the
|
|
# number of steps.
|
|
if args.use_tpu:
|
|
# Eval will be slightly WRONG on the TPU because it will truncate
|
|
# the last batch.
|
|
eval_steps = int(len(eval_examples) / args.eval_batch_size)
|
|
|
|
eval_drop_remainder = True if args.use_tpu else False
|
|
eval_input_fn = input_fn_builder(
|
|
features=eval_features,
|
|
seq_length=args.max_seq_length,
|
|
is_training=False,
|
|
drop_remainder=eval_drop_remainder)
|
|
|
|
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
|
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
|
|
with tf.gfile.GFile(output_eval_file, "w") as writer:
|
|
tf.logging.info("***** Eval results *****")
|
|
for key in sorted(result.keys()):
|
|
tf.logging.info(" %s = %s", key, str(result[key]))
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
return None |