transformers/examples/quantization/custom_quantization_int8_example.py
cyyever 0fb8d49e88
Use Python 3.9 syntax in examples (#37279)
Signed-off-by: cyy <cyyever@outlook.com>
2025-04-07 12:52:21 +01:00

258 lines
9.3 KiB
Python

import json
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from accelerate import init_empty_weights
from huggingface_hub import HfApi
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.quantizers import HfQuantizer, get_module_from_name, register_quantization_config, register_quantizer
from transformers.utils.quantization_config import QuantizationConfigMixin
# Implement INT8 Symmetric Linear layer
class Int8SymmetricLinear(torch.nn.Module):
def __init__(self, in_features, out_features, bias, dtype=torch.float32):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.zeros((out_features, in_features), dtype=torch.int8))
self.register_buffer("weight_scale", torch.zeros((out_features, 1), dtype=dtype))
if bias:
self.register_buffer("bias", torch.zeros((self.out_features), dtype=dtype))
else:
self.bias = None
def forward(self, x):
dequant_weight = self.weight * self.weight_scale
output = F.linear(x, dequant_weight)
if self.bias is not None:
output = output + self.bias
return output
# Function to replace standard linear layers with INT8 symmetric quantized layers
def _replace_with_int8_symmetric_linear(
model,
modules_to_not_convert=None,
current_key_name=None,
quantization_config=None,
has_been_replaced=False,
pre_quantized=False,
):
"""
Recursively replaces nn.Linear modules with Int8SymmetricLinear modules.
"""
if current_key_name is None:
current_key_name = []
for name, module in model.named_children():
current_key_name.append(name)
if (isinstance(module, nn.Linear)) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
current_key_name_str = ".".join(current_key_name)
if not any(
(key + "." in current_key_name_str) or (key == current_key_name_str) for key in modules_to_not_convert
):
with init_empty_weights(include_buffers=True):
in_features = module.in_features
out_features = module.out_features
model._modules[name] = Int8SymmetricLinear(
in_features, out_features, module.bias is not None, dtype=module.weight.dtype
)
has_been_replaced = True
model._modules[name].requires_grad_(False)
if len(list(module.children())) > 0:
_, has_been_replaced = _replace_with_int8_symmetric_linear(
module,
modules_to_not_convert,
current_key_name,
quantization_config,
has_been_replaced=has_been_replaced,
pre_quantized=pre_quantized,
)
# Remove the last key for recursion
current_key_name.pop(-1)
return model, has_been_replaced
def replace_with_int8_symmetric_linear(
model, modules_to_not_convert=None, current_key_name=None, quantization_config=None, pre_quantized=False
):
"""
Main function to replace model layers with INT8 symmetric quantized versions.
"""
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
if quantization_config.modules_to_not_convert is not None:
modules_to_not_convert.extend(quantization_config.modules_to_not_convert)
modules_to_not_convert = list(set(modules_to_not_convert))
model, has_been_replaced = _replace_with_int8_symmetric_linear(
model, modules_to_not_convert, current_key_name, quantization_config, pre_quantized=pre_quantized
)
if not has_been_replaced:
raise ValueError(
"You are loading your model using INT8 symmetric quantization but no linear modules were found in your model."
)
return model
@register_quantization_config("int8_symmetric")
class Int8SymmetricConfig(QuantizationConfigMixin):
"""
Configuration for INT8 symmetric quantization.
"""
def __init__(self, modules_to_not_convert: Optional[list[str]] = None, **kwargs):
self.quant_method = "int8_symmetric"
self.modules_to_not_convert = modules_to_not_convert
def __repr__(self):
config_dict = self.to_dict()
return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
def to_diff_dict(self) -> dict[str, Any]:
config_dict = self.to_dict()
default_config_dict = Int8SymmetricConfig().to_dict()
serializable_config_dict = {}
for key, value in config_dict.items():
if value != default_config_dict[key]:
serializable_config_dict[key] = value
return serializable_config_dict
@register_quantizer("int8_symmetric")
class Int8SymmetricQuantizer(HfQuantizer):
"""
Implementation of INT8 symmetric quantization.
"""
requires_calibration = False
requires_parameters_quantization = True
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs):
super().__init__(quantization_config, **kwargs)
self.quantization_config = quantization_config
def _process_model_before_weight_loading(self, model, **kwargs):
"""
Replace model's linear layers with quantized versions before loading weights.
"""
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
model = replace_with_int8_symmetric_linear(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
def check_quantized_param(
self,
model,
param_value: "torch.Tensor",
param_name: str,
state_dict: dict[str, Any],
**kwargs,
):
module, tensor_name = get_module_from_name(model, param_name)
if isinstance(module, Int8SymmetricLinear):
if self.pre_quantized or tensor_name == "bias":
if tensor_name == "weight" and param_value.dtype != torch.int8:
raise ValueError("Expect quantized weights but got an unquantized weight")
return False
else:
if tensor_name == "weight_scale":
raise ValueError("Expect unquantized weights but got a quantized weight_scale")
return True
return False
def create_quantized_param(
self,
model,
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: dict[str, Any],
unexpected_keys: Optional[list[str]] = None,
):
"""
Quantizes weights to INT8 symmetric format.
"""
abs_max_per_row = torch.max(torch.abs(param_value), dim=1, keepdim=True)[0].clamp(min=1e-5)
weight_scale = abs_max_per_row / 127.0
weight_quantized = torch.round(param_value / weight_scale).clamp(-128, 127).to(torch.int8)
module, tensor_name = get_module_from_name(model, param_name)
module._buffers[tensor_name] = weight_quantized.to(target_device)
module._buffers["weight_scale"] = weight_scale.to(target_device)
def update_missing_keys(self, model, missing_keys: list[str], prefix: str) -> list[str]:
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, Int8SymmetricLinear):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
def _process_model_after_weight_loading(self, model, **kwargs):
"""
Post-processing after weights are loaded.
"""
return True
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return False
# Example usage
if __name__ == "__main__":
model_int8 = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.2-1B", quantization_config=Int8SymmetricConfig(), torch_dtype=torch.float, device_map="cpu"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
input_text = "once there is"
inputs = tokenizer(input_text, return_tensors="pt").to("cpu")
output = model_int8.generate(
**inputs,
max_length=100,
num_return_sequences=1,
no_repeat_ngram_size=2,
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
# Save and upload to HUB
output_model_dir = "Llama-3.2-1B-INT8-CUSTOM"
model_int8.save_pretrained(output_model_dir)
tokenizer.save_pretrained(output_model_dir)
api = HfApi()
repo_id = "medmekk/Llama-3.2-1B-INT8-CUSTOM"
api.create_repo(repo_id, private=False)
api.upload_folder(folder_path=output_model_dir, repo_id=repo_id, repo_type="model")