transformers/tests/models/sam/test_processor_sam.py
Armaghan Shakir c53d53da89
🚨🚨🚨 Fix sdpa in SAM and refactor relative position embeddings (#36422)
* fall back to eager if output_attentions

* improve relative position embeddings

* run modular on got_ocr2

* run-slow: sam

* fix run-length encoding

* fix tf processor errors

* update tf_sam

* fix compile error

* re-run tests
2025-03-17 09:39:52 +00:00

342 lines
13 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin, prepare_image_inputs
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
from transformers.models.sam.image_processing_sam import _mask_to_rle_pytorch
if is_tf_available():
import tensorflow as tf
from transformers.models.sam.image_processing_sam import _mask_to_rle_tf
@require_vision
@require_torchvision
class SamProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = SamProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = SamImageProcessor()
processor = SamProcessor(image_processor)
processor.save_pretrained(self.tmpdirname)
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_mask_inputs(self):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
mask_inputs = [np.random.randint(255, size=(30, 400), dtype=np.uint8)]
mask_inputs = [Image.fromarray(x) for x in mask_inputs]
return mask_inputs
def test_chat_template_save_loading(self):
self.skipTest("SamProcessor does not have a tokenizer")
def test_image_processor_defaults_preserved_by_image_kwargs(self):
self.skipTest("SamProcessor does not have a tokenizer")
def test_kwargs_overrides_default_image_processor_kwargs(self):
self.skipTest("SamProcessor does not have a tokenizer")
def test_kwargs_overrides_default_tokenizer_kwargs(self):
self.skipTest("SamProcessor does not have a tokenizer")
def test_tokenizer_defaults_preserved_by_kwargs(self):
self.skipTest("SamProcessor does not have a tokenizer")
def test_save_load_pretrained_additional_features(self):
processor = SamProcessor(image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, SamImageProcessor)
def test_image_processor_no_masks(self):
image_processor = self.get_image_processor()
processor = SamProcessor(image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
for image in input_feat_extract.pixel_values:
self.assertEqual(image.shape, (3, 1024, 1024))
for original_size in input_feat_extract.original_sizes:
np.testing.assert_array_equal(original_size, np.array([30, 400]))
for reshaped_input_size in input_feat_extract.reshaped_input_sizes:
np.testing.assert_array_equal(
reshaped_input_size, np.array([77, 1024])
) # reshaped_input_size value is before padding
def test_image_processor_with_masks(self):
image_processor = self.get_image_processor()
processor = SamProcessor(image_processor=image_processor)
image_input = self.prepare_image_inputs()
mask_input = self.prepare_mask_inputs()
input_feat_extract = image_processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
input_processor = processor(images=image_input, segmentation_maps=mask_input, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
for label in input_feat_extract.labels:
self.assertEqual(label.shape, (256, 256))
@require_torch
def test_post_process_masks(self):
image_processor = self.get_image_processor()
processor = SamProcessor(image_processor=image_processor)
dummy_masks = [torch.ones((1, 3, 5, 5))]
original_sizes = [[1764, 2646]]
reshaped_input_size = [[683, 1024]]
masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size)
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
masks = processor.post_process_masks(
dummy_masks, torch.tensor(original_sizes), torch.tensor(reshaped_input_size)
)
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
# should also work with np
dummy_masks = [np.ones((1, 3, 5, 5))]
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
dummy_masks = [[1, 0], [0, 1]]
with self.assertRaises(ValueError):
masks = processor.post_process_masks(dummy_masks, np.array(original_sizes), np.array(reshaped_input_size))
def test_rle_encoding(self):
"""
Test the run-length encoding function.
"""
# Test that a mask of all zeros returns a single run [height * width].
input_mask = torch.zeros((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2
rle = _mask_to_rle_pytorch(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
# For a 2x2 all-zero mask, we expect a single run of length 4:
self.assertEqual(rle[0]["counts"], [4])
# Test that a mask of all ones returns [0, height * width].
input_mask = torch.ones((1, 2, 2), dtype=torch.long) # shape: 1 x 2 x 2
rle = _mask_to_rle_pytorch(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
# For a 2x2 all-one mask, we expect two runs: [0, 4].
self.assertEqual(rle[0]["counts"], [0, 4])
# Test a mask with mixed 0s and 1s to ensure the run-length encoding is correct.
# Example mask:
# Row 0: [0, 1]
# Row 1: [1, 1]
# This is shape (1, 2, 2).
# Flattened in Fortran order -> [0, 1, 1, 1].
# The RLE for [0,1,1,1] is [1, 3].
input_mask = torch.tensor([[[0, 1], [1, 1]]], dtype=torch.long)
rle = _mask_to_rle_pytorch(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
self.assertEqual(rle[0]["counts"], [1, 3]) # 1 zero, followed by 3 ones
@require_vision
@require_tf
class TFSamProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = SamImageProcessor()
processor = SamProcessor(image_processor)
processor.save_pretrained(self.tmpdirname)
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
# This is to avoid repeating the skipping of the common tests
def prepare_image_inputs(self):
"""This function prepares a list of PIL images."""
return prepare_image_inputs()
def test_save_load_pretrained_additional_features(self):
processor = SamProcessor(image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = SamProcessor.from_pretrained(self.tmpdirname, do_normalize=False, padding_value=1.0)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, SamImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
processor = SamProcessor(image_processor=image_processor)
image_input = self.prepare_image_inputs()
input_feat_extract = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
input_feat_extract.pop("original_sizes") # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes") # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
@require_tf
def test_post_process_masks(self):
image_processor = self.get_image_processor()
processor = SamProcessor(image_processor=image_processor)
dummy_masks = [tf.ones((1, 3, 5, 5))]
original_sizes = [[1764, 2646]]
reshaped_input_size = [[683, 1024]]
masks = processor.post_process_masks(dummy_masks, original_sizes, reshaped_input_size, return_tensors="tf")
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
masks = processor.post_process_masks(
dummy_masks,
tf.convert_to_tensor(original_sizes),
tf.convert_to_tensor(reshaped_input_size),
return_tensors="tf",
)
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
# should also work with np
dummy_masks = [np.ones((1, 3, 5, 5))]
masks = processor.post_process_masks(
dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
)
self.assertEqual(masks[0].shape, (1, 3, 1764, 2646))
dummy_masks = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError):
masks = processor.post_process_masks(
dummy_masks, np.array(original_sizes), np.array(reshaped_input_size), return_tensors="tf"
)
def test_rle_encoding(self):
"""
Test the run-length encoding function.
"""
# Test that a mask of all zeros returns a single run [height * width].
input_mask = tf.zeros((1, 2, 2), dtype=tf.int64) # shape: 1 x 2 x 2
rle = _mask_to_rle_tf(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
# For a 2x2 all-zero mask, we expect a single run of length 4:
self.assertEqual(rle[0]["counts"], [4])
# Test that a mask of all ones returns [0, height * width].
input_mask = tf.ones((1, 2, 2), dtype=tf.int64) # shape: 1 x 2 x 2
rle = _mask_to_rle_tf(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
# For a 2x2 all-one mask, we expect two runs: [0, 4].
self.assertEqual(rle[0]["counts"], [0, 4])
# Test a mask with mixed 0s and 1s to ensure the run-length encoding is correct.
# Example mask:
# Row 0: [0, 1]
# Row 1: [1, 1]
# This is shape (1, 2, 2).
# Flattened in Fortran order -> [0, 1, 1, 1].
# The RLE for [0,1,1,1] is [1, 3].
input_mask = tf.constant([[[0, 1], [1, 1]]], dtype=tf.int64)
rle = _mask_to_rle_tf(input_mask)
self.assertEqual(len(rle), 1)
self.assertEqual(rle[0]["size"], [2, 2])
self.assertEqual(rle[0]["counts"], [1, 3]) # 1 zero, followed by 3 ones
@require_vision
@require_torchvision
class SamProcessorEquivalenceTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = SamImageProcessor()
processor = SamProcessor(image_processor)
processor.save_pretrained(self.tmpdirname)
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
# This is to avoid repeating the skipping of the common tests
def prepare_image_inputs(self):
"""This function prepares a list of PIL images."""
return prepare_image_inputs()