transformers/utils/check_repo.py
Arthur c236a62172
[CLAP] Add CLAP to the library (#21370)
* add model like clip

* update

* text model ok

* clap text works

* some refactor

- `CLAPVision` to `CLAPAudio`
- refactor kwargs of audio modules

* more refactor

* more refactor

* more refactor

* correct fusion

* more refactor

* new modules

* add basic processor

* fixup

* remove whisper copioed from

* audio logits match

* add doc

* correct filters mel and add maxlength

* style

* few fixes

* forward passes

* fixup

* fixup

* some clean up

* remove mels form the dictionnary

* pad after the repeat

* update padding when dsmaller

* fix padding

* style

* use swin patch merging

* use copied from swin

* processor with any tokenizer

* more copied from

* some clean up

* more refactor

* fix mel when rand_trunc

* style

* remove unused imports

* update processing

* remove image processing tests

* add testing fiel

* fixmodeling issues

* replace with `is_longer`

* clap in serialization

* more refactor

* `make fixup`

* make fixup

* fix feature extractor

* update test feature extractor

* `make fixup`

* clean up config

* more clean up

* more cleanup

* update tests

* refactor tests and inits

* removeCLAP vision config

* remove CLAP from image procssing auto and dummy vision objects

* update inits

* style

* re order classes in modeling clap

* Use roberta tokenizer as the other weights are not open sourced

* small cleaup

* remove tokenization CLAP

* processor tokenizr is roberta

* update feature extraction doc

* remove vclap from model zero shot

* update f_min and f_max to frequency_xx

* some changes

- fix modeling keys
- add `is_longer` in the forward pass
- make fixup

* make fixup

* consistent behavior ebtween rand_crop and fusion

* add numpy resize and bilinear and documentation

* move resizing to image utils

* clean feature extraction

* import resize from correct file

* resize in image transforms

* update

* style

* style

* nit

* remove unused arguments form the feature extractor

* style

* few fixes + make fixup

* oops

* fix more tests

* add zero shot audio classification pipeline

* update zeroshot classification pipeline

* fixup

* fix copies

* all CI tests pass

* make fixup + fix docs

* fix docs

* fix docs

* update tests pip;eline

* update zero shot pipeline

* update feature extraction clap

* update tokenization auto

* use nested simplify

* update pipeline tests

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* split in two lines

* fixes

* refactor

* clean up

* add integration tests

* update config docstring

* style

* update processor

* fix processor test

* fix feat extractor tests

* update docs

* Apply suggestions from code review

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* fix readmes

* fix tips

* Update src/transformers/models/auto/configuration_auto.py

* update doc and remove todo -> properly explained

* fix idx and typo

* typoe

* cleanup config

* cleanup tests, styles and doc

* ignore docstyle on image transform

* add conversion script

* remove the `clap` indx in favor of `CLAP`

* update __init

* nits

* Update src/transformers/pipelines/__init__.py

* fix bug

* clarifiy config

* fix copy

* fix init

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* fix model output

* fix comment

* make fixup

* make fixup

* rename to `Clap`

* replace to `Clap`

* replace to `Clap`

* repo consistency

* again repo-consistency

* make fixup

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* add config

* changes

* update conversion

* Apply suggestions from code review

Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>

* remove unused function

* update based on code reviews

* style

* more comments

* cleanup

* clean up

* style

* apply suggestions

* Empty commit

* pipeline will be added in a different PR

* update calls to audio utils functions

* update pipeline init

* style

* style

* styling again

* use pad

* fix repo-consistency

* update utils and add doc for audio utils

* clean up resize by using torch. update inits accordingly

* style

* CLap's  tokenizer is RobertA

* add audio utils to internal toctreee

* update totctree

* style

* update documentation and normalize naming accross audio utils and feature extraction clap

* style

* clean up

* update doc and typos

* fix doctest

* update modelin code, got rid of a lot of reshaping

* style on added doc audio utils

* update modeling clap

* style

* Apply suggestions from code review

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* docstringvariables with CLAP

* rename key

* update modeling CLAP

* update audio utils docstring

* update processing clap

* fix readmes

* fix toctree

* udpate configuration clap

* fix init

* make fixup

* fix

* fix

* update naming

* update

* update checkpoint path

* Apply suggestions from code review

* Major refactoring

* Update src/transformers/models/clap/configuration_clap.py

* merge

---------

Co-authored-by: younesbelkada <younesbelkada@gmail.com>
Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Sanchit Gandhi <93869735+sanchit-gandhi@users.noreply.github.com>
2023-02-16 20:59:27 +01:00

880 lines
36 KiB
Python

# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import re
import warnings
from collections import OrderedDict
from difflib import get_close_matches
from pathlib import Path
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.models.auto import get_values
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
PATH_TO_DOC = "docs/source/en"
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
"AltRobertaModel",
"DPRSpanPredictor",
"LongT5Stack",
"RealmBertModel",
"T5Stack",
"MT5Stack",
"SwitchTransformersStack",
"TFDPRSpanPredictor",
"MaskFormerSwinModel",
"MaskFormerSwinPreTrainedModel",
"BridgeTowerTextModel",
"BridgeTowerVisionModel",
]
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
# models to ignore for not tested
"Blip2QFormerModel", # Building part of bigger (tested) model.
"DetaEncoder", # Building part of bigger (tested) model.
"DetaDecoder", # Building part of bigger (tested) model.
"ErnieMForInformationExtraction",
"GraphormerEncoder", # Building part of bigger (tested) model.
"GraphormerDecoderHead", # Building part of bigger (tested) model.
"CLIPSegDecoder", # Building part of bigger (tested) model.
"TableTransformerEncoder", # Building part of bigger (tested) model.
"TableTransformerDecoder", # Building part of bigger (tested) model.
"TimeSeriesTransformerEncoder", # Building part of bigger (tested) model.
"TimeSeriesTransformerDecoder", # Building part of bigger (tested) model.
"JukeboxVQVAE", # Building part of bigger (tested) model.
"JukeboxPrior", # Building part of bigger (tested) model.
"DeformableDetrEncoder", # Building part of bigger (tested) model.
"DeformableDetrDecoder", # Building part of bigger (tested) model.
"OPTDecoder", # Building part of bigger (tested) model.
"WhisperDecoder", # Building part of bigger (tested) model.
"WhisperEncoder", # Building part of bigger (tested) model.
"DecisionTransformerGPT2Model", # Building part of bigger (tested) model.
"SegformerDecodeHead", # Building part of bigger (tested) model.
"PLBartEncoder", # Building part of bigger (tested) model.
"PLBartDecoder", # Building part of bigger (tested) model.
"PLBartDecoderWrapper", # Building part of bigger (tested) model.
"BigBirdPegasusEncoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoderWrapper", # Building part of bigger (tested) model.
"DetrEncoder", # Building part of bigger (tested) model.
"DetrDecoder", # Building part of bigger (tested) model.
"DetrDecoderWrapper", # Building part of bigger (tested) model.
"ConditionalDetrEncoder", # Building part of bigger (tested) model.
"ConditionalDetrDecoder", # Building part of bigger (tested) model.
"M2M100Encoder", # Building part of bigger (tested) model.
"M2M100Decoder", # Building part of bigger (tested) model.
"MCTCTEncoder", # Building part of bigger (tested) model.
"Speech2TextEncoder", # Building part of bigger (tested) model.
"Speech2TextDecoder", # Building part of bigger (tested) model.
"LEDEncoder", # Building part of bigger (tested) model.
"LEDDecoder", # Building part of bigger (tested) model.
"BartDecoderWrapper", # Building part of bigger (tested) model.
"BartEncoder", # Building part of bigger (tested) model.
"BertLMHeadModel", # Needs to be setup as decoder.
"BlenderbotSmallEncoder", # Building part of bigger (tested) model.
"BlenderbotSmallDecoderWrapper", # Building part of bigger (tested) model.
"BlenderbotEncoder", # Building part of bigger (tested) model.
"BlenderbotDecoderWrapper", # Building part of bigger (tested) model.
"MBartEncoder", # Building part of bigger (tested) model.
"MBartDecoderWrapper", # Building part of bigger (tested) model.
"MegatronBertLMHeadModel", # Building part of bigger (tested) model.
"MegatronBertEncoder", # Building part of bigger (tested) model.
"MegatronBertDecoder", # Building part of bigger (tested) model.
"MegatronBertDecoderWrapper", # Building part of bigger (tested) model.
"MvpDecoderWrapper", # Building part of bigger (tested) model.
"MvpEncoder", # Building part of bigger (tested) model.
"PegasusEncoder", # Building part of bigger (tested) model.
"PegasusDecoderWrapper", # Building part of bigger (tested) model.
"PegasusXEncoder", # Building part of bigger (tested) model.
"PegasusXDecoder", # Building part of bigger (tested) model.
"PegasusXDecoderWrapper", # Building part of bigger (tested) model.
"DPREncoder", # Building part of bigger (tested) model.
"ProphetNetDecoderWrapper", # Building part of bigger (tested) model.
"RealmBertModel", # Building part of bigger (tested) model.
"RealmReader", # Not regular model.
"RealmScorer", # Not regular model.
"RealmForOpenQA", # Not regular model.
"ReformerForMaskedLM", # Needs to be setup as decoder.
"Speech2Text2DecoderWrapper", # Building part of bigger (tested) model.
"TFDPREncoder", # Building part of bigger (tested) model.
"TFElectraMainLayer", # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
"TFRobertaForMultipleChoice", # TODO: fix
"TFRobertaPreLayerNormForMultipleChoice", # TODO: fix
"TrOCRDecoderWrapper", # Building part of bigger (tested) model.
"TFWhisperEncoder", # Building part of bigger (tested) model.
"TFWhisperDecoder", # Building part of bigger (tested) model.
"SeparableConv1D", # Building part of bigger (tested) model.
"FlaxBartForCausalLM", # Building part of bigger (tested) model.
"FlaxBertForCausalLM", # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
"OPTDecoderWrapper",
"TFSegformerDecodeHead", # Not a regular model.
"AltRobertaModel", # Building part of bigger (tested) model.
"BlipTextLMHeadModel", # No need to test it as it is tested by BlipTextVision models
"BridgeTowerTextModel", # No need to test it as it is tested by BridgeTowerModel model.
"BridgeTowerVisionModel", # No need to test it as it is tested by BridgeTowerModel model.
"SpeechT5Decoder", # Building part of bigger (tested) model.
"SpeechT5DecoderWithoutPrenet", # Building part of bigger (tested) model.
"SpeechT5DecoderWithSpeechPrenet", # Building part of bigger (tested) model.
"SpeechT5DecoderWithTextPrenet", # Building part of bigger (tested) model.
"SpeechT5Encoder", # Building part of bigger (tested) model.
"SpeechT5EncoderWithoutPrenet", # Building part of bigger (tested) model.
"SpeechT5EncoderWithSpeechPrenet", # Building part of bigger (tested) model.
"SpeechT5EncoderWithTextPrenet", # Building part of bigger (tested) model.
"SpeechT5SpeechDecoder", # Building part of bigger (tested) model.
"SpeechT5SpeechEncoder", # Building part of bigger (tested) model.
"SpeechT5TextDecoder", # Building part of bigger (tested) model.
"SpeechT5TextEncoder", # Building part of bigger (tested) model.
]
# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
"models/decision_transformer/test_modeling_decision_transformer.py",
"models/camembert/test_modeling_camembert.py",
"models/mt5/test_modeling_flax_mt5.py",
"models/mbart/test_modeling_mbart.py",
"models/mt5/test_modeling_mt5.py",
"models/pegasus/test_modeling_pegasus.py",
"models/camembert/test_modeling_tf_camembert.py",
"models/mt5/test_modeling_tf_mt5.py",
"models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
"models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
"models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
"models/xlm_roberta/test_modeling_xlm_roberta.py",
"models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
"models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
"models/decision_transformer/test_modeling_decision_transformer.py",
]
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
# models to ignore for model xxx mapping
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
"Blip2ForConditionalGeneration",
"Blip2QFormerModel",
"Blip2VisionModel",
"ErnieMForInformationExtraction",
"GitVisionModel",
"GraphormerModel",
"GraphormerForGraphClassification",
"BlipForConditionalGeneration",
"BlipForImageTextRetrieval",
"BlipForQuestionAnswering",
"BlipVisionModel",
"BlipTextLMHeadModel",
"BlipTextModel",
"Swin2SRForImageSuperResolution",
"BridgeTowerForImageAndTextRetrieval",
"BridgeTowerForMaskedLM",
"CLIPSegForImageSegmentation",
"CLIPSegVisionModel",
"CLIPSegTextModel",
"EsmForProteinFolding",
"TimeSeriesTransformerForPrediction",
"JukeboxVQVAE",
"JukeboxPrior",
"PegasusXEncoder",
"PegasusXDecoder",
"PegasusXDecoderWrapper",
"PegasusXEncoder",
"PegasusXDecoder",
"PegasusXDecoderWrapper",
"DPTForDepthEstimation",
"DecisionTransformerGPT2Model",
"GLPNForDepthEstimation",
"ViltForImagesAndTextClassification",
"ViltForImageAndTextRetrieval",
"ViltForTokenClassification",
"ViltForMaskedLM",
"XGLMEncoder",
"XGLMDecoder",
"XGLMDecoderWrapper",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"SegformerDecodeHead",
"TFSegformerDecodeHead",
"FlaxBeitForMaskedImageModeling",
"PLBartEncoder",
"PLBartDecoder",
"PLBartDecoderWrapper",
"BeitForMaskedImageModeling",
"ChineseCLIPTextModel",
"ChineseCLIPVisionModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
"GroupViTTextModel",
"GroupViTVisionModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
"TFGroupViTTextModel",
"TFGroupViTVisionModel",
"FlaxCLIPTextModel",
"FlaxCLIPVisionModel",
"FlaxWav2Vec2ForCTC",
"DetrForSegmentation",
"ConditionalDetrForSegmentation",
"DPRReader",
"FlaubertForQuestionAnswering",
"FlavaImageCodebook",
"FlavaTextModel",
"FlavaImageModel",
"FlavaMultimodalModel",
"GPT2DoubleHeadsModel",
"GPTSw3DoubleHeadsModel",
"LayoutLMForQuestionAnswering",
"LukeForMaskedLM",
"LukeForEntityClassification",
"LukeForEntityPairClassification",
"LukeForEntitySpanClassification",
"OpenAIGPTDoubleHeadsModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
"RagModel",
"RagSequenceForGeneration",
"RagTokenForGeneration",
"RealmEmbedder",
"RealmForOpenQA",
"RealmScorer",
"RealmReader",
"TFDPRReader",
"TFGPT2DoubleHeadsModel",
"TFLayoutLMForQuestionAnswering",
"TFOpenAIGPTDoubleHeadsModel",
"TFRagModel",
"TFRagSequenceForGeneration",
"TFRagTokenForGeneration",
"Wav2Vec2ForCTC",
"HubertForCTC",
"SEWForCTC",
"SEWDForCTC",
"XLMForQuestionAnswering",
"XLNetForQuestionAnswering",
"SeparableConv1D",
"VisualBertForRegionToPhraseAlignment",
"VisualBertForVisualReasoning",
"VisualBertForQuestionAnswering",
"VisualBertForMultipleChoice",
"TFWav2Vec2ForCTC",
"TFHubertForCTC",
"XCLIPVisionModel",
"XCLIPTextModel",
"AltCLIPTextModel",
"AltCLIPVisionModel",
"AltRobertaModel",
"TvltForAudioVisualClassification",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5HifiGan",
]
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
[
("data2vec-text", "data2vec"),
("data2vec-audio", "data2vec"),
("data2vec-vision", "data2vec"),
("donut-swin", "donut"),
]
)
# This is to make sure the transformers module imported is the one in the repo.
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
def check_model_list():
"""Check the model list inside the transformers library."""
# Get the models from the directory structure of `src/transformers/models/`
models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
_models = []
for model in os.listdir(models_dir):
model_dir = os.path.join(models_dir, model)
if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
_models.append(model)
# Get the models from the directory structure of `src/transformers/models/`
models = [model for model in dir(transformers.models) if not model.startswith("__")]
missing_models = sorted(list(set(_models).difference(models)))
if missing_models:
raise Exception(
f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
)
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
"""Get the model modules inside the transformers library."""
_ignore_modules = [
"modeling_auto",
"modeling_encoder_decoder",
"modeling_marian",
"modeling_mmbt",
"modeling_outputs",
"modeling_retribert",
"modeling_utils",
"modeling_flax_auto",
"modeling_flax_encoder_decoder",
"modeling_flax_utils",
"modeling_speech_encoder_decoder",
"modeling_flax_speech_encoder_decoder",
"modeling_flax_vision_encoder_decoder",
"modeling_transfo_xl_utilities",
"modeling_tf_auto",
"modeling_tf_encoder_decoder",
"modeling_tf_outputs",
"modeling_tf_pytorch_utils",
"modeling_tf_utils",
"modeling_tf_transfo_xl_utilities",
"modeling_tf_vision_encoder_decoder",
"modeling_vision_encoder_decoder",
]
modules = []
for model in dir(transformers.models):
# There are some magic dunder attributes in the dir, we ignore them
if not model.startswith("__"):
model_module = getattr(transformers.models, model)
for submodule in dir(model_module):
if submodule.startswith("modeling") and submodule not in _ignore_modules:
modeling_module = getattr(model_module, submodule)
if inspect.ismodule(modeling_module):
modules.append(modeling_module)
return modules
def get_models(module, include_pretrained=False):
"""Get the objects in module that are models."""
models = []
model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
for attr_name in dir(module):
if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
continue
attr = getattr(module, attr_name)
if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
models.append((attr_name, attr))
return models
def is_a_private_model(model):
"""Returns True if the model should not be in the main init."""
if model in PRIVATE_MODELS:
return True
# Wrapper, Encoder and Decoder are all privates
if model.endswith("Wrapper"):
return True
if model.endswith("Encoder"):
return True
if model.endswith("Decoder"):
return True
if model.endswith("Prenet"):
return True
return False
def check_models_are_in_init():
"""Checks all models defined in the library are in the main init."""
models_not_in_init = []
dir_transformers = dir(transformers)
for module in get_model_modules():
models_not_in_init += [
model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
]
# Remove private models
models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
if len(models_not_in_init) > 0:
raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
"""Get the model test files.
The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
"""
_ignore_files = [
"test_modeling_common",
"test_modeling_encoder_decoder",
"test_modeling_flax_encoder_decoder",
"test_modeling_flax_speech_encoder_decoder",
"test_modeling_marian",
"test_modeling_tf_common",
"test_modeling_tf_encoder_decoder",
]
test_files = []
# Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
model_test_root = os.path.join(PATH_TO_TESTS, "models")
model_test_dirs = []
for x in os.listdir(model_test_root):
x = os.path.join(model_test_root, x)
if os.path.isdir(x):
model_test_dirs.append(x)
for target_dir in [PATH_TO_TESTS] + model_test_dirs:
for file_or_dir in os.listdir(target_dir):
path = os.path.join(target_dir, file_or_dir)
if os.path.isfile(path):
filename = os.path.split(path)[-1]
if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
file = os.path.join(*path.split(os.sep)[1:])
test_files.append(file)
return test_files
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
"""Parse the content of test_file to detect what's in all_model_classes"""
# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
content = f.read()
all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
# Check with one less parenthesis as well
all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
if len(all_models) > 0:
model_tested = []
for entry in all_models:
for line in entry.split(","):
name = line.strip()
if len(name) > 0:
model_tested.append(name)
return model_tested
def check_models_are_tested(module, test_file):
"""Check models defined in module are tested in test_file."""
# XxxPreTrainedModel are not tested
defined_models = get_models(module)
tested_models = find_tested_models(test_file)
if tested_models is None:
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
return
return [
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
+ "`utils/check_repo.py`."
]
failures = []
for model_name, _ in defined_models:
if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
failures.append(
f"{model_name} is defined in {module.__name__} but is not tested in "
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
+ "in the file `utils/check_repo.py`."
)
return failures
def check_all_models_are_tested():
"""Check all models are properly tested."""
modules = get_model_modules()
test_files = get_model_test_files()
failures = []
for module in modules:
test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
if len(test_file) == 0:
failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
elif len(test_file) > 1:
failures.append(f"{module.__name__} has several test files: {test_file}.")
else:
test_file = test_file[0]
new_failures = check_models_are_tested(module, test_file)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
def get_all_auto_configured_models():
"""Return the list of all models in at least one auto class."""
result = set() # To avoid duplicates we concatenate all model classes in a set.
if is_torch_available():
for attr_name in dir(transformers.models.auto.modeling_auto):
if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
if is_tf_available():
for attr_name in dir(transformers.models.auto.modeling_tf_auto):
if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
if is_flax_available():
for attr_name in dir(transformers.models.auto.modeling_flax_auto):
if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
return [cls for cls in result]
def ignore_unautoclassed(model_name):
"""Rules to determine if `name` should be in an auto class."""
# Special white list
if model_name in IGNORE_NON_AUTO_CONFIGURED:
return True
# Encoder and Decoder should be ignored
if "Encoder" in model_name or "Decoder" in model_name:
return True
return False
def check_models_are_auto_configured(module, all_auto_models):
"""Check models defined in module are each in an auto class."""
defined_models = get_models(module)
failures = []
for model_name, _ in defined_models:
if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
failures.append(
f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
"If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
"`utils/check_repo.py`."
)
return failures
def check_all_models_are_auto_configured():
"""Check all models are each in an auto class."""
missing_backends = []
if not is_torch_available():
missing_backends.append("PyTorch")
if not is_tf_available():
missing_backends.append("TensorFlow")
if not is_flax_available():
missing_backends.append("Flax")
if len(missing_backends) > 0:
missing = ", ".join(missing_backends)
if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
raise Exception(
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
f"Transformers repo, the following are missing: {missing}."
)
else:
warnings.warn(
"Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
"didn't make any change in one of those backends modeling files, you should probably execute the "
"command above to be on the safe side."
)
modules = get_model_modules()
all_auto_models = get_all_auto_configured_models()
failures = []
for module in modules:
new_failures = check_models_are_auto_configured(module, all_auto_models)
if new_failures is not None:
failures += new_failures
if len(failures) > 0:
raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")
def check_decorator_order(filename):
"""Check that in the test file `filename` the slow decorator is always last."""
with open(filename, "r", encoding="utf-8", newline="\n") as f:
lines = f.readlines()
decorator_before = None
errors = []
for i, line in enumerate(lines):
search = _re_decorator.search(line)
if search is not None:
decorator_name = search.groups()[0]
if decorator_before is not None and decorator_name.startswith("parameterized"):
errors.append(i)
decorator_before = decorator_name
elif decorator_before is not None:
decorator_before = None
return errors
def check_all_decorator_order():
"""Check that in all test files, the slow decorator is always last."""
errors = []
for fname in os.listdir(PATH_TO_TESTS):
if fname.endswith(".py"):
filename = os.path.join(PATH_TO_TESTS, fname)
new_errors = check_decorator_order(filename)
errors += [f"- {filename}, line {i}" for i in new_errors]
if len(errors) > 0:
msg = "\n".join(errors)
raise ValueError(
"The parameterized decorator (and its variants) should always be first, but this is not the case in the"
f" following files:\n{msg}"
)
def find_all_documented_objects():
"""Parse the content of all doc files to detect which classes and functions it documents"""
documented_obj = []
for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
content = f.read()
raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
return documented_obj
# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
"AutoModelWithLMHead",
"BartPretrainedModel",
"DataCollator",
"DataCollatorForSOP",
"GlueDataset",
"GlueDataTrainingArguments",
"LineByLineTextDataset",
"LineByLineWithRefDataset",
"LineByLineWithSOPTextDataset",
"PretrainedBartModel",
"PretrainedFSMTModel",
"SingleSentenceClassificationProcessor",
"SquadDataTrainingArguments",
"SquadDataset",
"SquadExample",
"SquadFeatures",
"SquadV1Processor",
"SquadV2Processor",
"TFAutoModelWithLMHead",
"TFBartPretrainedModel",
"TextDataset",
"TextDatasetForNextSentencePrediction",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2Tokenizer",
"glue_compute_metrics",
"glue_convert_examples_to_features",
"glue_output_modes",
"glue_processors",
"glue_tasks_num_labels",
"squad_convert_examples_to_features",
"xnli_compute_metrics",
"xnli_output_modes",
"xnli_processors",
"xnli_tasks_num_labels",
"TFTrainer",
"TFTrainingArguments",
]
# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
"AddedToken", # This is a tokenizers class.
"BasicTokenizer", # Internal, should never have been in the main init.
"CharacterTokenizer", # Internal, should never have been in the main init.
"DPRPretrainedReader", # Like an Encoder.
"DummyObject", # Just picked by mistake sometimes.
"MecabTokenizer", # Internal, should never have been in the main init.
"ModelCard", # Internal type.
"SqueezeBertModule", # Internal building block (should have been called SqueezeBertLayer)
"TFDPRPretrainedReader", # Like an Encoder.
"TransfoXLCorpus", # Internal type.
"WordpieceTokenizer", # Internal, should never have been in the main init.
"absl", # External module
"add_end_docstrings", # Internal, should never have been in the main init.
"add_start_docstrings", # Internal, should never have been in the main init.
"convert_tf_weight_name_to_pt_weight_name", # Internal used to convert model weights
"logger", # Internal logger
"logging", # External module
"requires_backends", # Internal function
"AltRobertaModel", # Internal module
]
# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
# Benchmarks
"PyTorchBenchmark",
"PyTorchBenchmarkArguments",
"TensorFlowBenchmark",
"TensorFlowBenchmarkArguments",
"AutoBackbone",
"BitBackbone",
"ConvNextBackbone",
"DinatBackbone",
"MaskFormerSwinBackbone",
"MaskFormerSwinConfig",
"MaskFormerSwinModel",
"NatBackbone",
"ResNetBackbone",
"SwinBackbone",
]
def ignore_undocumented(name):
"""Rules to determine if `name` should be undocumented."""
# NOT DOCUMENTED ON PURPOSE.
# Constants uppercase are not documented.
if name.isupper():
return True
# PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
if (
name.endswith("PreTrainedModel")
or name.endswith("Decoder")
or name.endswith("Encoder")
or name.endswith("Layer")
or name.endswith("Embeddings")
or name.endswith("Attention")
):
return True
# Submodules are not documented.
if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
):
return True
# All load functions are not documented.
if name.startswith("load_tf") or name.startswith("load_pytorch"):
return True
# is_xxx_available functions are not documented.
if name.startswith("is_") and name.endswith("_available"):
return True
# Deprecated objects are not documented.
if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
return True
# MMBT model does not really work.
if name.startswith("MMBT"):
return True
if name in SHOULD_HAVE_THEIR_OWN_PAGE:
return True
return False
def check_all_objects_are_documented():
"""Check all models are properly documented."""
documented_objs = find_all_documented_objects()
modules = transformers._modules
objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
if len(undocumented_objs) > 0:
raise Exception(
"The following objects are in the public init so should be documented:\n - "
+ "\n - ".join(undocumented_objs)
)
check_docstrings_are_in_md()
check_model_type_doc_match()
def check_model_type_doc_match():
"""Check all doc pages have a corresponding model type."""
model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]
model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
errors = []
for m in model_docs:
if m not in model_types and m != "auto":
close_matches = get_close_matches(m, model_types)
error_message = f"{m} is not a proper model identifier."
if len(close_matches) > 0:
close_matches = "/".join(close_matches)
error_message += f" Did you mean {close_matches}?"
errors.append(error_message)
if len(errors) > 0:
raise ValueError(
"Some model doc pages do not match any existing model type:\n"
+ "\n".join(errors)
+ "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
"models/auto/configuration_auto.py."
)
# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)
def is_rst_docstring(docstring):
"""
Returns `True` if `docstring` is written in rst.
"""
if _re_rst_special_words.search(docstring) is not None:
return True
if _re_double_backquotes.search(docstring) is not None:
return True
if _re_rst_example.search(docstring) is not None:
return True
return False
def check_docstrings_are_in_md():
"""Check all docstrings are in md"""
files_with_rst = []
for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
with open(file, encoding="utf-8") as f:
code = f.read()
docstrings = code.split('"""')
for idx, docstring in enumerate(docstrings):
if idx % 2 == 0 or not is_rst_docstring(docstring):
continue
files_with_rst.append(file)
break
if len(files_with_rst) > 0:
raise ValueError(
"The following files have docstrings written in rst:\n"
+ "\n".join([f"- {f}" for f in files_with_rst])
+ "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
"(`pip install git+https://github.com/huggingface/doc-builder`)"
)
def check_repo_quality():
"""Check all models are properly tested and documented."""
print("Checking all models are included.")
check_model_list()
print("Checking all models are public.")
check_models_are_in_init()
print("Checking all models are properly tested.")
check_all_decorator_order()
check_all_models_are_tested()
print("Checking all objects are properly documented.")
check_all_objects_are_documented()
print("Checking all models are in at least one auto class.")
check_all_models_are_auto_configured()
if __name__ == "__main__":
check_repo_quality()