transformers/pytorch_transformers/tokenization_xlm.py
2019-09-19 10:55:06 +02:00

807 lines
35 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2019 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import json
import logging
import os
import re
import sys
import unicodedata
from io import open
import sacremoses as sm
from .tokenization_utils import PreTrainedTokenizer
from .tokenization_bert import BasicTokenizer
logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
PRETRAINED_VOCAB_FILES_MAP = {
'vocab_file':
{
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-vocab.json",
'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-vocab.json",
'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-vocab.json",
'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-vocab.json",
'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-vocab.json",
'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-vocab.json",
'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-vocab.json",
'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-vocab.json",
'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-vocab.json",
'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-vocab.json",
},
'merges_file':
{
'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-merges.txt",
'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-merges.txt",
'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-merges.txt",
'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-merges.txt",
'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-merges.txt",
'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-merges.txt",
'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-merges.txt",
'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-merges.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
'xlm-mlm-en-2048': 512,
'xlm-mlm-ende-1024': 512,
'xlm-mlm-enfr-1024': 512,
'xlm-mlm-enro-1024': 512,
'xlm-mlm-tlm-xnli15-1024': 512,
'xlm-mlm-xnli15-1024': 512,
'xlm-clm-enfr-1024': 512,
'xlm-clm-ende-1024': 512,
'xlm-mlm-17-1280': 512,
'xlm-mlm-100-1280': 512,
}
PRETRAINED_INIT_CONFIGURATION = {
'xlm-mlm-en-2048': {"do_lowercase_and_remove_accent": True},
'xlm-mlm-ende-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "de",
"1": "en"},
"lang2id": { "de": 0,
"en": 1 }},
'xlm-mlm-enfr-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "en",
"1": "fr"},
"lang2id": { "en": 0,
"fr": 1 }},
'xlm-mlm-enro-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "en",
"1": "ro"},
"lang2id": { "en": 0,
"ro": 1 }},
'xlm-mlm-tlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "ar",
"1": "bg",
"2": "de",
"3": "el",
"4": "en",
"5": "es",
"6": "fr",
"7": "hi",
"8": "ru",
"9": "sw",
"10": "th",
"11": "tr",
"12": "ur",
"13": "vi",
"14": "zh"},
"lang2id": { "ar": 0,
"bg": 1,
"de": 2,
"el": 3,
"en": 4,
"es": 5,
"fr": 6,
"hi": 7,
"ru": 8,
"sw": 9,
"th": 10,
"tr": 11,
"ur": 12,
"vi": 13,
"zh": 14 }},
'xlm-mlm-xnli15-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "ar",
"1": "bg",
"2": "de",
"3": "el",
"4": "en",
"5": "es",
"6": "fr",
"7": "hi",
"8": "ru",
"9": "sw",
"10": "th",
"11": "tr",
"12": "ur",
"13": "vi",
"14": "zh"},
"lang2id": { "ar": 0,
"bg": 1,
"de": 2,
"el": 3,
"en": 4,
"es": 5,
"fr": 6,
"hi": 7,
"ru": 8,
"sw": 9,
"th": 10,
"tr": 11,
"ur": 12,
"vi": 13,
"zh": 14 }},
'xlm-clm-enfr-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "en",
"1": "fr"},
"lang2id": { "en": 0,
"fr": 1 }},
'xlm-clm-ende-1024': { "do_lowercase_and_remove_accent": True,
"id2lang": { "0": "de",
"1": "en"},
"lang2id": { "de": 0,
"en": 1 }},
'xlm-mlm-17-1280': {"do_lowercase_and_remove_accent": False,
"id2lang": {
"0": "ar",
"1": "de",
"2": "en",
"3": "es",
"4": "fr",
"5": "hi",
"6": "it",
"7": "ja",
"8": "ko",
"9": "nl",
"10": "pl",
"11": "pt",
"12": "ru",
"13": "sv",
"14": "tr",
"15": "vi",
"16": "zh"
},
"lang2id": {
"ar": 0,
"de": 1,
"en": 2,
"es": 3,
"fr": 4,
"hi": 5,
"it": 6,
"ja": 7,
"ko": 8,
"nl": 9,
"pl": 10,
"pt": 11,
"ru": 12,
"sv": 13,
"tr": 14,
"vi": 15,
"zh": 16}},
'xlm-mlm-100-1280': {"do_lowercase_and_remove_accent": False,
"id2lang": {
"0": "af",
"1": "als",
"2": "am",
"3": "an",
"4": "ang",
"5": "ar",
"6": "arz",
"7": "ast",
"8": "az",
"9": "bar",
"10": "be",
"11": "bg",
"12": "bn",
"13": "br",
"14": "bs",
"15": "ca",
"16": "ceb",
"17": "ckb",
"18": "cs",
"19": "cy",
"20": "da",
"21": "de",
"22": "el",
"23": "en",
"24": "eo",
"25": "es",
"26": "et",
"27": "eu",
"28": "fa",
"29": "fi",
"30": "fr",
"31": "fy",
"32": "ga",
"33": "gan",
"34": "gl",
"35": "gu",
"36": "he",
"37": "hi",
"38": "hr",
"39": "hu",
"40": "hy",
"41": "ia",
"42": "id",
"43": "is",
"44": "it",
"45": "ja",
"46": "jv",
"47": "ka",
"48": "kk",
"49": "kn",
"50": "ko",
"51": "ku",
"52": "la",
"53": "lb",
"54": "lt",
"55": "lv",
"56": "mk",
"57": "ml",
"58": "mn",
"59": "mr",
"60": "ms",
"61": "my",
"62": "nds",
"63": "ne",
"64": "nl",
"65": "nn",
"66": "no",
"67": "oc",
"68": "pl",
"69": "pt",
"70": "ro",
"71": "ru",
"72": "scn",
"73": "sco",
"74": "sh",
"75": "si",
"76": "simple",
"77": "sk",
"78": "sl",
"79": "sq",
"80": "sr",
"81": "sv",
"82": "sw",
"83": "ta",
"84": "te",
"85": "th",
"86": "tl",
"87": "tr",
"88": "tt",
"89": "uk",
"90": "ur",
"91": "uz",
"92": "vi",
"93": "war",
"94": "wuu",
"95": "yi",
"96": "zh",
"97": "zh_classical",
"98": "zh_min_nan",
"99": "zh_yue"
},
"lang2id": {
"af": 0,
"als": 1,
"am": 2,
"an": 3,
"ang": 4,
"ar": 5,
"arz": 6,
"ast": 7,
"az": 8,
"bar": 9,
"be": 10,
"bg": 11,
"bn": 12,
"br": 13,
"bs": 14,
"ca": 15,
"ceb": 16,
"ckb": 17,
"cs": 18,
"cy": 19,
"da": 20,
"de": 21,
"el": 22,
"en": 23,
"eo": 24,
"es": 25,
"et": 26,
"eu": 27,
"fa": 28,
"fi": 29,
"fr": 30,
"fy": 31,
"ga": 32,
"gan": 33,
"gl": 34,
"gu": 35,
"he": 36,
"hi": 37,
"hr": 38,
"hu": 39,
"hy": 40,
"ia": 41,
"id": 42,
"is": 43,
"it": 44,
"ja": 45,
"jv": 46,
"ka": 47,
"kk": 48,
"kn": 49,
"ko": 50,
"ku": 51,
"la": 52,
"lb": 53,
"lt": 54,
"lv": 55,
"mk": 56,
"ml": 57,
"mn": 58,
"mr": 59,
"ms": 60,
"my": 61,
"nds": 62,
"ne": 63,
"nl": 64,
"nn": 65,
"no": 66,
"oc": 67,
"pl": 68,
"pt": 69,
"ro": 70,
"ru": 71,
"scn": 72,
"sco": 73,
"sh": 74,
"si": 75,
"simple": 76,
"sk": 77,
"sl": 78,
"sq": 79,
"sr": 80,
"sv": 81,
"sw": 82,
"ta": 83,
"te": 84,
"th": 85,
"tl": 86,
"tr": 87,
"tt": 88,
"uk": 89,
"ur": 90,
"uz": 91,
"vi": 92,
"war": 93,
"wuu": 94,
"yi": 95,
"zh": 96,
"zh_classical": 97,
"zh_min_nan": 98,
"zh_yue": 99
}},
}
def get_pairs(word):
"""
Return set of symbol pairs in a word.
word is represented as tuple of symbols (symbols being variable-length strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def lowercase_and_remove_accent(text):
"""
Lowercase and strips accents from a piece of text based on
https://github.com/facebookresearch/XLM/blob/master/tools/lowercase_and_remove_accent.py
"""
text = ' '.join(text)
text = text.lower()
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output).lower().split(' ')
def replace_unicode_punct(text):
'''
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
'''
text = text.replace('', ',')
text = re.sub(r'\s*', '. ', text)
text = text.replace('', ',')
text = text.replace('', '"')
text = text.replace('', '"')
text = text.replace('', ':')
text = text.replace('', ':')
text = text.replace('', '?')
text = text.replace('', '"')
text = text.replace('', '"')
text = text.replace('', ')')
text = text.replace('', '!')
text = text.replace('', '(')
text = text.replace('', ';')
text = text.replace('', '"')
text = text.replace('', '"')
text = text.replace('', '"')
text = text.replace('', '0')
text = text.replace('', '3')
text = text.replace('', '2')
text = text.replace('', '5')
text = text.replace('', '6')
text = text.replace('', '9')
text = text.replace('', '7')
text = text.replace('', '8')
text = text.replace('', '4')
text = re.sub(r'\s*', '. ', text)
text = text.replace('', '~')
text = text.replace('', '\'')
text = text.replace('', '...')
text = text.replace('', '-')
text = text.replace('', '<')
text = text.replace('', '>')
text = text.replace('', '[')
text = text.replace('', ']')
text = text.replace('', '%')
return text
def remove_non_printing_char(text):
'''
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
'''
output = []
for char in text:
cat = unicodedata.category(char)
if cat.startswith('C'):
continue
output.append(char)
return "".join(output)
def romanian_preprocessing(text):
'''Sennrich's WMT16 scripts for Romanian preprocessing, used by model `xlm-mlm-enro-1024`'''
# https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/normalise-romanian.py
text = text.replace("\u015e", "\u0218").replace("\u015f", "\u0219")
text = text.replace("\u0162", "\u021a").replace("\u0163", "\u021b")
# https://github.com/rsennrich/wmt16-scripts/blob/master/preprocess/remove-diacritics.py
text = text.replace("\u0218", "S").replace("\u0219", "s") #s-comma
text = text.replace("\u021a", "T").replace("\u021b", "t") #t-comma
text = text.replace("\u0102", "A").replace("\u0103", "a")
text = text.replace("\u00C2", "A").replace("\u00E2", "a")
text = text.replace("\u00CE", "I").replace("\u00EE", "i")
return text
class XLMTokenizer(PreTrainedTokenizer):
"""
BPE tokenizer for XLM
- Moses preprocessing & tokenization for most supported languages
- Language specific tokenization for Chinese (Jieba), Japanese (KyTea) and Thai (PyThaiNLP)
- (optionally) lower case & normalize all inputs text
- argument ``special_tokens`` and function ``set_special_tokens``, can be used to add additional symbols \
(ex: "__classify__") to a vocabulary
- `lang2id` attribute maps the languages supported by the model with their ids if provided (automatically set for pretrained vocabularies)
- `id2lang` attributes does reverse mapping if provided (automatically set for pretrained vocabularies)
- `do_lowercase_and_remove_accent` controle lower casing and accent (automatically set for pretrained vocabularies)
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>",
sep_token="</s>", pad_token="<pad>", cls_token="</s>",
mask_token="<special1>", additional_special_tokens=["<special0>",
"<special1>", "<special2>", "<special3>", "<special4>", "<special5>",
"<special6>", "<special7>", "<special8>", "<special9>"],
lang2id=None, id2lang=None, do_lowercase_and_remove_accent=True,
**kwargs):
super(XLMTokenizer, self).__init__(unk_token=unk_token, bos_token=bos_token,
sep_token=sep_token, pad_token=pad_token,
cls_token=cls_token, mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
**kwargs)
# cache of sm.MosesPunctNormalizer instance
self.cache_moses_punct_normalizer = dict()
# cache of sm.MosesTokenizer instance
self.cache_moses_tokenizer = dict()
self.lang_with_custom_tokenizer = set(['zh', 'th', 'ja'])
# True for current supported model (v1.2.0), False for XLM-17 & 100
self.do_lowercase_and_remove_accent = do_lowercase_and_remove_accent
self.lang2id = lang2id
self.id2lang = id2lang
if lang2id is not None and id2lang is not None:
assert len(lang2id) == len(id2lang)
self.ja_word_tokenizer = None
self.zh_word_tokenizer = None
self.encoder = json.load(open(vocab_file, encoding="utf-8"))
self.decoder = {v:k for k,v in self.encoder.items()}
merges = open(merges_file, encoding='utf-8').read().split('\n')[:-1]
merges = [tuple(merge.split()[:2]) for merge in merges]
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {}
def moses_punct_norm(self, text, lang):
if lang not in self.cache_moses_punct_normalizer:
punct_normalizer = sm.MosesPunctNormalizer(lang=lang)
self.cache_moses_punct_normalizer[lang] = punct_normalizer
else:
punct_normalizer = self.cache_moses_punct_normalizer[lang]
return punct_normalizer.normalize(text)
def moses_tokenize(self, text, lang):
if lang not in self.cache_moses_tokenizer:
moses_tokenizer = sm.MosesTokenizer(lang=lang)
self.cache_moses_tokenizer[lang] = moses_tokenizer
else:
moses_tokenizer = self.cache_moses_tokenizer[lang]
return moses_tokenizer.tokenize(text, return_str=False, escape=False)
def moses_pipeline(self, text, lang):
text = replace_unicode_punct(text)
text = self.moses_punct_norm(text, lang)
text = remove_non_printing_char(text)
return text
def ja_tokenize(self, text):
if self.ja_word_tokenizer is None:
try:
import Mykytea
self.ja_word_tokenizer = Mykytea.Mykytea('-model %s/local/share/kytea/model.bin' % os.path.expanduser('~'))
except (AttributeError, ImportError) as e:
logger.error("Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper (https://github.com/chezou/Mykytea-python) with the following steps")
logger.error("1. git clone git@github.com:neubig/kytea.git && cd kytea")
logger.error("2. autoreconf -i")
logger.error("3. ./configure --prefix=$HOME/local")
logger.error("4. make && make install")
logger.error("5. pip install kytea")
raise e
return list(self.ja_word_tokenizer.getWS(text))
@property
def vocab_size(self):
return len(self.encoder)
def bpe(self, token):
word = tuple(token[:-1]) + (token[-1] + '</w>',)
if token in self.cache:
return self.cache[token]
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
if word == '\n </w>':
word = '\n</w>'
self.cache[token] = word
return word
def _tokenize(self, text, lang='en', bypass_tokenizer=False):
"""
Tokenize a string given language code. For Chinese, Japanese and Thai, we use a language specific tokenizerself. Otherwise, we use Moses.
Details of tokenization:
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
- Install with `pip install sacremoses`
- [pythainlp](https://github.com/PyThaiNLP/pythainlp): Thai tokenizer
- Install with `pip install pythainlp`
- [kytea](https://github.com/chezou/Mykytea-python): Japanese tokenizer, wrapper of [KyTea](https://github.com/neubig/kytea)
- Install with the following steps:
```
git clone git@github.com:neubig/kytea.git && cd kytea
autoreconf -i
./configure --prefix=$HOME/local
make && make install
pip install kytea
```
- [jieba](https://github.com/fxsjy/jieba): Chinese tokenizer *
- Install with `pip install jieba`
\* The original XLM used [Stanford Segmenter](https://nlp.stanford.edu/software/stanford-segmenter-2018-10-16.zip).
However, the wrapper (`nltk.tokenize.stanford_segmenter`) is slow due to JVM overhead, and it will be deprecated.
Jieba is a lot faster and pip-installable. Note there is some mismatch with the Stanford Segmenter. It should be fine
if you fine-tune the model with Chinese supervisionself. If you want the same exact behaviour, use the original XLM
[preprocessing script](https://github.com/facebookresearch/XLM/tree/master/tools) to tokenize the sentence externally,
and set `bypass_tokenizer=True` to bypass the tokenizer.
Args:
- lang: ISO language code (default = 'en') (string). Languages should belong of the model supported languages. However, we don't enforce it.
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE.
Returns:
List of tokens.
"""
if lang and self.lang2id and lang not in self.lang2id:
logger.error("Supplied language code not found in lang2id mapping. Please check that your language is supported by the loaded pretrained model.")
if bypass_tokenizer:
text = text.split()
elif lang not in self.lang_with_custom_tokenizer:
text = self.moses_pipeline(text, lang=lang)
# TODO: make sure we are using `xlm-mlm-enro-1024`, since XLM-100 doesn't have this step
if lang == 'ro':
text = romanian_preprocessing(text)
text = self.moses_tokenize(text, lang=lang)
elif lang == 'th':
text = self.moses_pipeline(text, lang=lang)
try:
if 'pythainlp' not in sys.modules:
from pythainlp.tokenize import word_tokenize as th_word_tokenize
else:
th_word_tokenize = sys.modules['pythainlp'].word_tokenize
except (AttributeError, ImportError) as e:
logger.error("Make sure you install PyThaiNLP (https://github.com/PyThaiNLP/pythainlp) with the following steps")
logger.error("1. pip install pythainlp")
raise e
text = th_word_tokenize(text)
elif lang == 'zh':
try:
if 'jieba' not in sys.modules:
import jieba
else:
jieba = sys.modules['jieba']
except (AttributeError, ImportError) as e:
logger.error("Make sure you install Jieba (https://github.com/fxsjy/jieba) with the following steps")
logger.error("1. pip install jieba")
raise e
text = ' '.join(jieba.cut(text))
text = self.moses_pipeline(text, lang=lang)
text = text.split()
elif lang == 'ja':
text = self.moses_pipeline(text, lang=lang)
text = self.ja_tokenize(text)
else:
raise ValueError('It should not reach here')
if self.do_lowercase_and_remove_accent and not bypass_tokenizer:
text = lowercase_and_remove_accent(text)
split_tokens = []
for token in text:
if token:
split_tokens.extend([t for t in self.bpe(token).split(' ')])
return split_tokens
def _convert_token_to_id(self, token):
""" Converts a token (str/unicode) in an id using the vocab. """
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (string/unicode) using the vocab."""
return self.decoder.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
""" Converts a sequence of tokens (string) in a single string. """
out_string = ''.join(tokens).replace('</w>', ' ').strip()
return out_string
def add_special_tokens_single_sequence(self, token_ids):
"""
Adds special tokens to a sequence for sequence classification tasks.
An XLM sequence has the following format: [CLS] X [SEP]
"""
return [self.cls_token_id] + token_ids + [self.sep_token_id]
def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1):
"""
Adds special tokens to a sequence pair for sequence classification tasks.
An XLM sequence pair has the following format: [CLS] A [SEP] B [SEP]
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_mask_from_sequences(self, sequence_0, sequence_1):
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task.
An XLM sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
| first sequence | second sequence
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
return len(cls + self.encode(sequence_0) + sep) * [0] + len(self.encode(sequence_1) + sep) * [1]
def save_vocabulary(self, save_directory):
"""Save the tokenizer vocabulary and merge files to a directory."""
if not os.path.isdir(save_directory):
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
return
vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])
with open(vocab_file, 'w', encoding='utf-8') as f:
f.write(json.dumps(self.encoder, ensure_ascii=False))
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!".format(merge_file))
index = token_index
writer.write(' '.join(bpe_tokens) + u'\n')
index += 1
return vocab_file, merge_file