transformers/tests/models/llava/test_processor_llava.py
Yoni Gozlan c0c6815dc9
Add support for args to ProcessorMixin for backward compatibility (#33479)
* add check and prepare args for BC to ProcessorMixin, improve ProcessorTesterMixin

* change size and crop_size in processor kwargs tests to do_rescale and rescale_factor

* remove unnecessary llava processor kwargs test overwrite

* nit

* change data_arg_name to input_name

* Remove unnecessary test override

* Remove unnecessary tests Paligemma

* Move test_prepare_and_validate_optional_call_args to TesterMixin, add docstring
2024-09-20 11:40:59 -04:00

96 lines
3.7 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import shutil
import tempfile
import unittest
from transformers import AutoProcessor, AutoTokenizer, LlamaTokenizerFast, LlavaProcessor
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import CLIPImageProcessor
@require_vision
class LlavaProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = LlavaProcessor
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = CLIPImageProcessor(do_center_crop=False)
tokenizer = LlamaTokenizerFast.from_pretrained("huggyllama/llama-7b")
processor_kwargs = self.prepare_processor_dict()
processor = LlavaProcessor(image_processor, tokenizer, **processor_kwargs)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def prepare_processor_dict(self):
return {"chat_template": "dummy_template"}
@unittest.skip(
"Skip because the model has no processor kwargs except for chat template and"
"chat template is saved as a separate file. Stop skipping this test when the processor"
"has new kwargs saved in config file."
)
def test_processor_to_json_string(self):
pass
def test_chat_template_is_saved(self):
processor_loaded = self.processor_class.from_pretrained(self.tmpdirname)
processor_dict_loaded = json.loads(processor_loaded.to_json_string())
# chat templates aren't serialized to json in processors
self.assertFalse("chat_template" in processor_dict_loaded.keys())
# they have to be saved as separate file and loaded back from that file
# so we check if the same template is loaded
processor_dict = self.prepare_processor_dict()
self.assertTrue(processor_loaded.chat_template == processor_dict.get("chat_template", None))
def test_can_load_various_tokenizers(self):
for checkpoint in ["Intel/llava-gemma-2b", "llava-hf/llava-1.5-7b-hf"]:
processor = LlavaProcessor.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
self.assertEqual(processor.tokenizer.__class__, tokenizer.__class__)
def test_chat_template(self):
processor = LlavaProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
expected_prompt = "USER: <image>\nWhat is shown in this image? ASSISTANT:"
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
formatted_prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
self.assertEqual(expected_prompt, formatted_prompt)