transformers/tests/models/emu3/test_processor_emu3.py
Raushan Turganbay a563999a02
[processor] clean up mulitmodal tests (#37362)
* clkea up mulitmodal processor tests

* fixup

* fix tests

* fix one last test

* forgot
2025-04-11 13:32:19 +02:00

93 lines
4.4 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch emu3 model."""
import tempfile
import unittest
import numpy as np
from transformers import Emu3Processor, GPT2TokenizerFast
from transformers.utils import is_vision_available
from ...test_processing_common import ProcessorTesterMixin
if is_vision_available():
from transformers import Emu3ImageProcessor
class Emu3ProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = Emu3Processor
@classmethod
def setUpClass(cls):
cls.tmpdirname = tempfile.mkdtemp()
image_processor = Emu3ImageProcessor(min_pixels=28 * 28, max_pixels=56 * 56)
extra_special_tokens = extra_special_tokens = {
"image_token": "<image>",
"boi_token": "<|image start|>",
"eoi_token": "<|image end|>",
"image_wrapper_token": "<|image token|>",
"eof_token": "<|extra_201|>",
}
tokenizer = GPT2TokenizerFast.from_pretrained(
"openai-community/gpt2", extra_special_tokens=extra_special_tokens
)
tokenizer.pad_token_id = 0
tokenizer.sep_token_id = 1
processor = cls.processor_class(
image_processor=image_processor, tokenizer=tokenizer, chat_template="dummy_template"
)
processor.save_pretrained(cls.tmpdirname)
cls.image_token = processor.image_token
@staticmethod
def prepare_processor_dict():
return {
"chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}",
} # fmt: skip
def test_processor_for_generation(self):
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
# we don't need an image as input because the model will generate one
input_str = "lower newer"
image_input = self.prepare_image_inputs()
inputs = processor(text=input_str, return_for_image_generation=True, return_tensors="pt")
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "image_sizes"])
self.assertEqual(inputs[self.text_input_name].shape[-1], 8)
# when `return_for_image_generation` is set, we raise an error that image should not be provided
with self.assertRaises(ValueError):
inputs = processor(
text=input_str, images=image_input, return_for_image_generation=True, return_tensors="pt"
)
def test_processor_postprocess(self):
processor_components = self.prepare_components()
processor = self.processor_class(**processor_components)
input_str = "lower newer"
orig_image_input = self.prepare_image_inputs()
orig_image = np.array(orig_image_input).transpose(2, 0, 1)
inputs = processor(text=input_str, images=orig_image, do_resize=False, return_tensors="np")
normalized_image_input = inputs.pixel_values
unnormalized_images = processor.postprocess(normalized_image_input, return_tensors="np")["pixel_values"]
# For an image where pixels go from 0 to 255 the diff can be 1 due to some numerical precision errors when scaling and unscaling
self.assertTrue(np.abs(orig_image - unnormalized_images).max() >= 1)