transformers/tests/models/emu3/test_modeling_emu3.py
Raushan Turganbay 17742bd9c8
🔴 [VLM] Add base model without head (#37033)
* i guessreverted all CdGen classes

* style

* llava onevision

* fix copies

* fix some tests

* some more tests

* dump

* skip these

* nevermind, i am dumb

* revert fix not needed

* fixup

* fixup

* another fixup

* more fixup to make ci finally happy

* fixup after rebasing

* fix qwen tests

* add internVL + typos here and there

* image token index -> id

* style

* fix init weights

* revert blip-2 not supported

* address comments

* fix copies

* revert blip2 test file as well

* as discussed internally, revert back CdGen models

* fix some tests

* fix more tests for compile

* CI red

* fix copies

* enumerate explicitly allowed models

* address comments

* fix tests

* fixup

* style again

* add tests for new model class

* another fixup ( x _ x )

* [fixup] unused attributes can be removed post-deprecation
2025-05-07 17:47:51 +02:00

558 lines
23 KiB
Python

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch emu3 model."""
import unittest
import numpy as np
import pytest
import requests
from huggingface_hub import hf_hub_download
from parameterized import parameterized
from transformers import Emu3Config, Emu3TextConfig, is_torch_available, is_vision_available, set_seed
from transformers.testing_utils import (
Expectations,
require_bitsandbytes,
require_torch,
require_torch_large_accelerator,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_vision_available():
from PIL import Image
if is_torch_available():
import torch
from transformers import (
Emu3ForCausalLM,
Emu3ForConditionalGeneration,
Emu3Model,
Emu3Processor,
Emu3TextModel,
)
class Emu3Text2TextModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
intermediate_size=37,
max_position_embeddings=512,
initializer_range=0.02,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = input_ids.ne(1).to(torch_device)
config = self.get_config()
return config, input_ids, attention_mask
def get_config(self):
return Emu3TextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
max_position_embeddings=self.max_position_embeddings,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class Emu3Text2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Emu3ForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"text-generation": Emu3ForCausalLM,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
fx_compatible = False
def setUp(self):
self.model_tester = Emu3Text2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Emu3TextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = Emu3TextModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = Emu3TextModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
torch.testing.assert_close(original_short_output, scaled_short_output, rtol=1e-5, atol=1e-5)
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@unittest.skip("Doesn't work, tensors are not almost same") # TODO raushan fixme
def test_custom_4d_attention_mask(self):
pass
class Emu3Vision2TextModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
intermediate_size=37,
max_position_embeddings=512,
initializer_range=0.02,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
image_token_id=3,
image_size=30,
codebook_size=20,
temporal_downsample_factor=1,
base_channels=32,
vq_channel_multiplier=[1, 1],
image_seq_length=100,
vq_img_token_start_id=3,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.image_token_id = image_token_id
self.image_size = image_size
self.codebook_size = codebook_size
self.temporal_downsample_factor = temporal_downsample_factor
self.vq_channel_multiplier = vq_channel_multiplier
self.vq_img_token_start_id = vq_img_token_start_id
self.base_channels = base_channels
self.seq_length = seq_length + image_seq_length
self.image_seq_length = image_seq_length
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size)
attention_mask = input_ids.ne(1).to(torch_device)
input_ids[input_ids == self.image_token_id] = self.pad_token_id
input_ids[:, : self.image_seq_length] = self.image_token_id
pixel_values = floats_tensor(
[
self.batch_size,
3,
self.image_size,
self.image_size,
]
)
image_sizes = [[self.image_size, self.image_size]] * self.batch_size
image_sizes = torch.tensor(image_sizes, device=torch_device, dtype=torch.int64)
return config, input_ids, attention_mask, pixel_values, image_sizes
def get_config(self):
# create dummy vocab map for image2bpe mapping if it needs remapping
# we assume that vocab size is big enough to account for `codebook_size` amount of
# image tokens somewhere at the beginning of total vocab size
vocab_map = {i: chr(i) for i in range(self.vocab_size)}
start = self.vq_img_token_start_id
end = self.vq_img_token_start_id + self.codebook_size
for i in range(start, end):
# dummy str for each token, anything that fits pattern "<|visual token XXXXXX|>"
vocab_map[i] = f"<|visual token{i:06d}|>"
# add tokens that have to be in the vocab, we'll retrieve their ids later in modeling code
vocab_map[self.image_token_id] = "<image>"
vocab_map[self.image_token_id + 1] = "<|extra_200|>"
vocab_map = {v: k for k, v in vocab_map.items()}
text_config = Emu3TextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
vq_config = {
"codebook_size": self.codebook_size,
"temporal_downsample_factor": self.temporal_downsample_factor,
"base_channels": self.base_channels,
"channel_multiplier": self.vq_channel_multiplier,
"hidden_size": self.base_channels,
}
return Emu3Config(text_config=text_config, vq_config=vq_config, vocabulary_map=vocab_map)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
pixel_values,
image_sizes,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"image_sizes": image_sizes,
}
return config, inputs_dict
@require_torch
class Emu3Vision2TextModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
Emu3Model,
Emu3ForConditionalGeneration,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = {}
test_headmasking = False
test_pruning = False
fx_compatible = False
def setUp(self):
self.model_tester = Emu3Vision2TextModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Emu3Config, has_text_modality=False, common_properties=["vocabulary_map"]
)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
wte = model.get_input_embeddings()
inputs["inputs_embeds"] = wte(input_ids)
with torch.no_grad():
model(**inputs)
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
# while some other models require pixel_values to be present
def test_inputs_embeds_matches_input_ids(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
input_ids = inputs["input_ids"]
del inputs["input_ids"]
del inputs["pixel_values"]
inputs_embeds = model.get_input_embeddings()(input_ids)
with torch.no_grad():
out_ids = model(input_ids=input_ids, **inputs)[0]
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
torch.testing.assert_close(out_embeds, out_ids)
@unittest.skip(
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
)
def test_disk_offload_safetensors(self):
pass
@unittest.skip(
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
)
def test_disk_offload_bin(self):
pass
@unittest.skip(
"Emu3 has a VQ module that uses `weight.data` directly in forward which prevent offloding on that module"
)
def test_cpu_offload(self):
pass
@unittest.skip("VQ-VAE module doesn't initialize weights properly")
def test_initialization(self):
pass
@pytest.mark.generate
@unittest.skip("Emu3 has dynamic control flow in vision backbone")
def test_generate_with_static_cache(self):
pass
@unittest.skip("Emu3 doesn't support Flex attn yet!")
def test_flex_attention_with_grads(self):
pass
@require_torch
class Emu3IntegrationTest(unittest.TestCase):
@slow
@require_bitsandbytes
def test_model_generation(self):
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
image = Image.open(requests.get("https://picsum.photos/id/237/200/200", stream=True).raw)
prompt = "USER: <image>Describe what do you see here and tell me about the history behind it? ASSISTANT:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, torch.float16)
# greedy generation outputs
EXPECTED_TEXT_COMPLETION = ['USER: 64*64Describe what do you see here and tell me about the history behind it? ASSISTANT: The image captures a moment of tranquility with a black Labrador Retriever resting on a wooden floor. The dog, with its glossy black coat, is lying down with its front legs stretched out in'] # fmt: skip
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_bitsandbytes
@require_torch_large_accelerator
def test_model_generation_batched(self):
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
processor.tokenizer.padding_side = "left"
image = Image.open(requests.get("https://picsum.photos/id/237/50/50", stream=True).raw)
image_2 = Image.open(requests.get("https://picsum.photos/id/247/50/50", stream=True).raw)
prompts = [
"USER: <image>Describe what do you see here? ASSISTANT:",
"USER: <image>What can you say about the image? ASSISTANT:",
]
inputs = processor(images=[image, image_2], text=prompts, padding=True, return_tensors="pt").to(
model.device, torch.float16
)
# greedy generation outputs
EXPECTED_TEXT_COMPLETIONS = Expectations(
{
("xpu", 3): [
"USER: 64*64Describe what do you see here? ASSISTANT: The image depicts a black panther in a crouched position. The panther's body is elongated and its head is lowered, suggesting a state of alertness or readiness. The animal's",
"USER: 64*64What can you say about the image? ASSISTANT: The image depicts a serene natural landscape. The foreground consists of a grassy area with some patches of bare earth. The middle ground shows a gently sloping hill with a reddish-brown hue,",
],
("cuda", 7): [
"USER: 64*64Describe what do you see here? ASSISTANT: The image depicts a black panther in a crouched position. The panther's body is elongated and curved, with its head lowered and ears pointed forward, suggesting alertness or focus.",
"USER: 64*64What can you say about the image? ASSISTANT: The image depicts a serene natural landscape. The foreground consists of a grassy area with some patches of bare earth. The middle ground shows a steep, reddish-brown cliff, which could be a",
],
}
) # fmt: skip
EXPECTED_TEXT_COMPLETION = EXPECTED_TEXT_COMPLETIONS.get_expectation()
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_bitsandbytes
@require_torch_large_accelerator
def test_model_generation_multi_image(self):
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Chat-hf", load_in_4bit=True)
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Chat-hf")
image = Image.open(requests.get("https://picsum.photos/id/237/50/50", stream=True).raw)
image_2 = Image.open(requests.get("https://picsum.photos/id/247/50/50", stream=True).raw)
prompt = "USER: <image><image>What do these two images have in common? ASSISTANT:"
inputs = processor(images=[image, image_2], text=prompt, return_tensors="pt").to(model.device, torch.float16)
# greedy generation outputs
EXPECTED_TEXT_COMPLETIONS = Expectations(
{
("xpu", 3): ['USER: 64*6464*64What do these two images have in common? ASSISTANT: The two images both depict a rhinoceros, yet they are significantly different in terms of focus and clarity. The rhinoceros in the upper image is in sharp focus, showing detailed textures'],
("cuda", 7): ["USER: 64*6464*64What do these two images have in common? ASSISTANT: Both images feature a black animal, but they are not the same animal. The top image shows a close-up of a black cow's head, while the bottom image depicts a black cow in a natural"],
}
) # fmt: skip
EXPECTED_TEXT_COMPLETION = EXPECTED_TEXT_COMPLETIONS.get_expectation()
generated_ids = model.generate(**inputs, max_new_tokens=40, do_sample=False)
text = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
@slow
@require_bitsandbytes
@require_torch_large_accelerator
def test_model_generate_images(self):
model = Emu3ForConditionalGeneration.from_pretrained("BAAI/Emu3-Gen-hf", load_in_4bit=True)
processor = Emu3Processor.from_pretrained("BAAI/Emu3-Gen-hf")
inputs = processor(
text=["a portrait of young girl. masterpiece, film grained, best quality."],
padding=True,
return_tensors="pt",
return_for_image_generation=True,
image_area=1600,
).to(model.device)
self.assertTrue(inputs.input_ids.shape[1] == 21)
image_sizes = inputs.pop("image_sizes")
HEIGHT, WIDTH = image_sizes[0]
VISUAL_TOKENS = model.vocabulary_mapping.image_tokens
def prefix_allowed_tokens_fn(batch_id, input_ids):
height, width = HEIGHT, WIDTH
visual_tokens = VISUAL_TOKENS
image_wrapper_token_id = torch.tensor([processor.tokenizer.image_wrapper_token_id], device=model.device)
eoi_token_id = torch.tensor([processor.tokenizer.eoi_token_id], device=model.device)
eos_token_id = torch.tensor([processor.tokenizer.eos_token_id], device=model.device)
pad_token_id = torch.tensor([processor.tokenizer.pad_token_id], device=model.device)
eof_token_id = torch.tensor([processor.tokenizer.eof_token_id], device=model.device)
eol_token_id = processor.tokenizer.encode("<|extra_200|>", return_tensors="pt")[0]
position = torch.nonzero(input_ids == image_wrapper_token_id, as_tuple=True)[0][0]
offset = input_ids.shape[0] - position
if offset % (width + 1) == 0:
return (eol_token_id,)
elif offset == (width + 1) * height + 1:
return (eof_token_id,)
elif offset == (width + 1) * height + 2:
return (eoi_token_id,)
elif offset == (width + 1) * height + 3:
return (eos_token_id,)
elif offset > (width + 1) * height + 3:
return (pad_token_id,)
else:
return visual_tokens
out = model.generate(
**inputs,
max_new_tokens=200,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
do_sample=False,
)
self.assertTrue(out.shape[1] == 54)
image = model.decode_image_tokens(out[:, inputs.input_ids.shape[1] :], height=HEIGHT, width=WIDTH)
images = processor.postprocess(list(image.float()), return_tensors="np")
self.assertTrue(images["pixel_values"].shape == (3, 40, 40))
self.assertTrue(isinstance(images["pixel_values"], np.ndarray))
filepath = hf_hub_download(
repo_id="raushan-testing-hf/images_test",
filename="emu3_image.npy",
repo_type="dataset",
)
original_pixels = np.load(filepath)
self.assertTrue(np.allclose(original_pixels, images["pixel_values"]))