transformers/transformers/modeling_seq2seq.py
2019-10-14 12:04:23 +02:00

252 lines
15 KiB
Python

# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import torch
from torch import nn
from .modeling_bert import BertModel, BertForMaskedLM, BertForSequenceClassification, BertForQuestionAnswering
from .modeling_openai import OpenAIGPTModel, OpenAIGPTLMHeadModel
from .modeling_gpt2 import GPT2Model, GPT2LMHeadModel
from .modeling_transfo_xl import TransfoXLModel, TransfoXLLMHeadModel
from .modeling_xlnet import XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering
from .modeling_xlm import XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering
from .modeling_roberta import RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification
from .modeling_distilbert import DistilBertModel, DistilBertForQuestionAnswering, DistilBertForMaskedLM, DistilBertForSequenceClassification
from .modeling_utils import PreTrainedModel, SequenceSummary
from .file_utils import add_start_docstrings
logger = logging.getLogger(__name__)
class PreTrainedSeq2seq(nn.Module):
r"""
:class:`~transformers.Seq2seq` is a generic model class
that will be instantiated as a Seq2seq model with one of the base model classes of the library
as encoder and (optionally) as decoder when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
class method.
The `from_pretrained()` method takes care of returning the correct model class instance
using pattern matching on the `pretrained_model_name_or_path` string.
The base model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertModel (DistilBERT model)
- contains `roberta`: RobertaModel (RoBERTa model)
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
This class cannot be instantiated using `__init__()` (throws an error).
"""
def __init__(self, encoder, decoder):
super(PreTrainedSeq2seq, self).__init__()
self.encoder = encoder
self.decoder = decoder
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r""" Instantiates one of the base model classes of the library
from a pre-trained model configuration.
The model class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertModel (DistilBERT model)
- contains `roberta`: RobertaModel (RoBERTa model)
- contains `bert`: BertModel (Bert model)
- contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
- contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
- contains `xlnet`: XLNetModel (XLNet model)
- contains `xlm`: XLMModel (XLM model)
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
To train the model, you should first set it back in training mode with `model.train()`
Params:
pretrained_model_name_or_path: either:
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
model_args: (`optional`) Sequence of positional arguments:
All remaning positional arguments will be passed to the underlying model's ``__init__`` method
config: (`optional`) instance of a class derived from :class:`~transformers.PretrainedConfig`:
Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:
- the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
- the model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
- the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.
state_dict: (`optional`) dict:
an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
This option can be used if you want to create a model from a pretrained configuration but load your own weights.
In this case though, you should check if using :func:`~transformers.PreTrainedModel.save_pretrained` and :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
cache_dir: (`optional`) string:
Path to a directory in which a downloaded pre-trained model
configuration should be cached if the standard cache should not be used.
force_download: (`optional`) boolean, default False:
Force to (re-)download the model weights and configuration files and override the cached versions if they exists.
proxies: (`optional`) dict, default None:
A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request.
output_loading_info: (`optional`) boolean:
Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.
kwargs: (`optional`) Remaining dictionary of keyword arguments:
Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:
- If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
- If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
Examples::
model = AutoModel.from_pretrained('bert-base-uncased') # Download model and configuration from S3 and cache.
model = AutoModel.from_pretrained('./test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True) # Update configuration during loading
assert model.config.output_attention == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
"""
# Extract encoder and decoder model if provided
encoder_model = kwargs.pop('encoder_model', None)
decoder_model = kwargs.pop('decoder_model', None)
# Extract decoder kwargs so we only have encoder kwargs for now
if decoder_model is None:
decoder_pretrained_model_name_or_path = kwargs.pop('decoder_pretrained_model_name_or_path', pretrained_model_name_or_path)
decoder_kwargs = {}
for key in kwargs.keys():
if key.startswith('decoder_'):
decoder_kwargs[key.replace('decoder_', '')] = kwargs.pop(key)
# Load and initialize the decoder
if encoder_model:
encoder = encoder_model
else:
# Load and initialize the encoder
kwargs['is_decoder'] = False # Make sure the encoder will be an encoder
if 'distilbert' in pretrained_model_name_or_path:
encoder = DistilBertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'roberta' in pretrained_model_name_or_path:
encoder = RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'bert' in pretrained_model_name_or_path:
encoder = BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'openai-gpt' in pretrained_model_name_or_path:
encoder = OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'gpt2' in pretrained_model_name_or_path:
encoder = GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'transfo-xl' in pretrained_model_name_or_path:
encoder = TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlnet' in pretrained_model_name_or_path:
encoder = XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
elif 'xlm' in pretrained_model_name_or_path:
encoder = XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
else:
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'".format(pretrained_model_name_or_path))
# Load and initialize the decoder
if decoder_model:
decoder = decoder_model
else:
kwargs.update(decoder_kwargs) # Replace encoder kwargs with decoder specific kwargs like config, state_dict, etc...
kwargs['is_decoder'] = True # Make sure the decoder will be an decoder
if 'distilbert' in decoder_pretrained_model_name_or_path:
decoder = DistilBertModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'roberta' in decoder_pretrained_model_name_or_path:
decoder = RobertaModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'bert' in decoder_pretrained_model_name_or_path:
decoder = BertModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'openai-gpt' in decoder_pretrained_model_name_or_path:
decoder = OpenAIGPTModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'gpt2' in decoder_pretrained_model_name_or_path:
decoder = GPT2Model.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'transfo-xl' in decoder_pretrained_model_name_or_path:
decoder = TransfoXLModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'xlnet' in decoder_pretrained_model_name_or_path:
decoder = XLNetModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
elif 'xlm' in decoder_pretrained_model_name_or_path:
decoder = XLMModel.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs)
else:
raise ValueError("Unrecognized model identifier in {}. Should contains one of "
"'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
"'xlm', 'roberta'".format(decoder_pretrained_model_name_or_path))
model = cls(encoder, decoder)
return model
def forward(self, *inputs, *kwargs):
# Extract decoder inputs
decoder_kwargs = {}
for key in kwargs.keys():
if key.startswith('decoder_'):
decoder_kwargs[key.replace('decoder_', '')] = kwargs.pop(key)
# Compute encoder hidden states if needed
encoder_hidden_states = kwargs.pop('encoder_hidden_states', None)
if encoder_hidden_states is None:
encoder_outputs = self.encoder(*inputs, *kwargs)
encoder_hidden_states = encoder_outputs[0]
else:
encoder_outputs = (,)
# Decode
decoder_kwargs['encoder_hidden_states'] = encoder_hidden_states
decoder_outputs = self.decoder(**decoder_kwargs)
return decoder_outputs + encoder_outputs
class Model2Model(PreTrainedSeq2seq):
def tie_weights():
# We should tie encoder and decoder embeddings if possible here
pass
class Model2LSTM(PreTrainedSeq2seq):
@classmethod
def from_pretrained(cls, *args, **kwargs):
if kwargs.get('decoder_model', None) is None:
# We will create a randomly initilized LSTM model as decoder
if 'decoder_config' not in kwargs:
raise ValueError("To load an LSTM in Seq2seq model, please supply either: "
" - a torch.nn.LSTM model as `decoder_model` parameter (`decoder_model=lstm_model`), or "
" - a dictionary of configuration parameters that will be used to initialize a
" torch.nn.LSTM model as `decoder_config` keyword argument. "
" E.g. `decoder_config=\{'input_size': 768, 'hidden_size': 768, 'num_layers': 2\}`")
kwargs['decoder_model'] = torch.nn.LSTM(kwarg.pop('decoder_config'))
model = super(Model2LSTM, cls).from_pretrained(*args, **kwargs)
return model