mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* expand the test for VLMs * typo * mark models `supports_flex` + expand test for additional kwargs * flex attn for refactored vision models * fix copies * fix * unskip * style * address comments
353 lines
14 KiB
Python
353 lines
14 KiB
Python
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VipLlava model."""
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import requests
|
|
from parameterized import parameterized
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
VipLlavaConfig,
|
|
VipLlavaForConditionalGeneration,
|
|
VipLlavaModel,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaVisionText2TextModelTester with Llava->VipLlava
|
|
class VipLlavaVisionText2TextModelTester:
|
|
# Ignore copy
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=0,
|
|
projector_hidden_act="gelu",
|
|
seq_length=7,
|
|
vision_feature_layers=[0, 0, 1, 1, 0],
|
|
text_config={
|
|
"model_type": "llama",
|
|
"seq_length": 7,
|
|
"is_training": True,
|
|
"use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"hidden_act": "gelu",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 512,
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 1,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"batch_size": 12,
|
|
"image_size": 8,
|
|
"patch_size": 2,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
self.image_token_index = image_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_layers = vision_feature_layers
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 3
|
|
self.num_channels = 3
|
|
self.image_size = 336
|
|
self.num_image_tokens = (self.vision_config["image_size"] // self.vision_config["patch_size"]) ** 2
|
|
self.seq_length = seq_length + self.num_image_tokens
|
|
self.encoder_seq_length = self.seq_length
|
|
|
|
def get_config(self):
|
|
return VipLlavaConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
ignore_index=self.ignore_index,
|
|
image_token_index=self.image_token_index,
|
|
projector_hidden_act=self.projector_hidden_act,
|
|
vision_feature_layers=self.vision_feature_layers,
|
|
image_seq_length=self.num_image_tokens,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
|
|
input_ids[input_ids == config.image_token_index] = self.pad_token_id
|
|
input_ids[:, : self.num_image_tokens] = config.image_token_index
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
# Copied from transformers.tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest with Llava->VipLlava
|
|
class VipLlavaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `VipLlavaForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(
|
|
VipLlavaModel,
|
|
VipLlavaForConditionalGeneration,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = {"image-text-to-text": VipLlavaForConditionalGeneration} if is_torch_available() else {}
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = VipLlavaVisionText2TextModelTester(self)
|
|
common_properties = ["image_token_index", "vision_feature_layers", "image_seq_length"]
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=VipLlavaConfig, has_text_modality=False, common_properties=common_properties
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
# Copied from tests.models.llava.test_modeling_llava.LlavaForConditionalGenerationModelTest.test_mismatching_num_image_tokens
|
|
def test_mismatching_num_image_tokens(self):
|
|
"""
|
|
Tests that VLMs through an error with explicit message saying what is wrong
|
|
when number of images doesn't match number of image tokens in the text.
|
|
Also we need to test multi-image cases when one prompr has multiple image tokens.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
curr_input_dict = copy.deepcopy(input_dict) # in=place modifications further
|
|
_ = model(**curr_input_dict) # successful forward with no modifications
|
|
|
|
# remove one image but leave the image token in text
|
|
curr_input_dict["pixel_values"] = curr_input_dict["pixel_values"][-1:, ...]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**curr_input_dict)
|
|
|
|
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
|
|
input_ids = curr_input_dict["input_ids"][:1]
|
|
pixel_values = curr_input_dict["pixel_values"][:1]
|
|
input_ids = torch.cat([input_ids, input_ids], dim=0)
|
|
|
|
# one image and two image tokens raise an error
|
|
with self.assertRaises(ValueError):
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
# two images and two image tokens don't raise an error
|
|
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
(-1,),
|
|
([-1],),
|
|
([-1, -2],),
|
|
],
|
|
)
|
|
def test_vision_feature_layers(self, vision_feature_layers):
|
|
"""
|
|
Test that we can use either one vision feature layer, or a list of
|
|
vision feature layers.
|
|
"""
|
|
# NOTE: vipllava uses vision_feature_layers instead of vision_feature_layer as the
|
|
# config key. The reason is that other llava classes supported one vision feature layer
|
|
# and added support for a list of layers with granite vision support, while vipllava
|
|
# originally supported multiple feature layers, and added support for a single layer for
|
|
# for compatibility reasons.
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.vision_feature_layers = vision_feature_layers
|
|
|
|
num_feature_layers = 1 if isinstance(vision_feature_layers, int) else len(vision_feature_layers)
|
|
hidden_size = config.vision_config.hidden_size
|
|
expected_features = hidden_size * num_feature_layers
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
# We should have the right number of input features,
|
|
# and should be able to run a forward pass without exploding
|
|
base_model = getattr(model, "model", model)
|
|
assert base_model.multi_modal_projector.linear_1.in_features == expected_features
|
|
model(**input_dict)
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
|
|
)
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
pass
|
|
|
|
|
|
@require_torch
|
|
class VipLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf")
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
model_id = "llava-hf/vip-llava-7b-hf"
|
|
|
|
model = VipLlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True)
|
|
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png"
|
|
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
prompt = "USER: <image>\nCan you please describe this image?\nASSISTANT:"
|
|
|
|
inputs = processor(prompt, image, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
outputs = model.generate(**inputs, max_new_tokens=10)
|
|
|
|
EXPECTED_OUTPUT = "USER: \nCan you please describe this image?\nASSISTANT: The image features a brown and white cat sitting on"
|
|
self.assertEqual(processor.decode(outputs[0], skip_special_tokens=True), EXPECTED_OUTPUT)
|