mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* Initial support for upload to hub * push -> upload * Fixes + examples * Fix torchhub test * Torchhub test I hate you * push_model_to_hub -> push_to_hub * Apply mixin to other pretrained models * Remove ABC inheritance * Add tests * Typo * Run tests * Install git-lfs * Change approach * Add push_to_hub to all * Staging test suite * Typo * Maybe like this? * More deps * Cache * Adapt name * Quality * MOAR tests * Put it in testing_utils * Docs + torchhub last hope * Styling * Wrong method * Typos * Update src/transformers/file_utils.py Co-authored-by: Julien Chaumond <julien@huggingface.co> * Address review comments * Apply suggestions from code review Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Julien Chaumond <julien@huggingface.co> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
311 lines
10 KiB
Python
Executable File
311 lines
10 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Fine-tuning the library models for sequence classification."""
|
|
|
|
|
|
import logging
|
|
import os
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, Optional
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoTokenizer,
|
|
EvalPrediction,
|
|
HfArgumentParser,
|
|
PreTrainedTokenizer,
|
|
TFAutoModelForSequenceClassification,
|
|
TFTrainer,
|
|
TFTrainingArguments,
|
|
)
|
|
from transformers.utils import logging as hf_logging
|
|
|
|
|
|
hf_logging.set_verbosity_info()
|
|
hf_logging.enable_default_handler()
|
|
hf_logging.enable_explicit_format()
|
|
|
|
|
|
def get_tfds(
|
|
train_file: str,
|
|
eval_file: str,
|
|
test_file: str,
|
|
tokenizer: PreTrainedTokenizer,
|
|
label_column_id: int,
|
|
max_seq_length: Optional[int] = None,
|
|
):
|
|
files = {}
|
|
|
|
if train_file is not None:
|
|
files[datasets.Split.TRAIN] = [train_file]
|
|
if eval_file is not None:
|
|
files[datasets.Split.VALIDATION] = [eval_file]
|
|
if test_file is not None:
|
|
files[datasets.Split.TEST] = [test_file]
|
|
|
|
ds = datasets.load_dataset("csv", data_files=files)
|
|
features_name = list(ds[list(files.keys())[0]].features.keys())
|
|
label_name = features_name.pop(label_column_id)
|
|
label_list = list(set(ds[list(files.keys())[0]][label_name]))
|
|
label2id = {label: i for i, label in enumerate(label_list)}
|
|
input_names = tokenizer.model_input_names
|
|
transformed_ds = {}
|
|
|
|
if len(features_name) == 1:
|
|
for k in files.keys():
|
|
transformed_ds[k] = ds[k].map(
|
|
lambda example: tokenizer.batch_encode_plus(
|
|
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
|
|
),
|
|
batched=True,
|
|
)
|
|
elif len(features_name) == 2:
|
|
for k in files.keys():
|
|
transformed_ds[k] = ds[k].map(
|
|
lambda example: tokenizer.batch_encode_plus(
|
|
(example[features_name[0]], example[features_name[1]]),
|
|
truncation=True,
|
|
max_length=max_seq_length,
|
|
padding="max_length",
|
|
),
|
|
batched=True,
|
|
)
|
|
|
|
def gen_train():
|
|
for ex in transformed_ds[datasets.Split.TRAIN]:
|
|
d = {k: v for k, v in ex.items() if k in input_names}
|
|
label = label2id[ex[label_name]]
|
|
yield (d, label)
|
|
|
|
def gen_val():
|
|
for ex in transformed_ds[datasets.Split.VALIDATION]:
|
|
d = {k: v for k, v in ex.items() if k in input_names}
|
|
label = label2id[ex[label_name]]
|
|
yield (d, label)
|
|
|
|
def gen_test():
|
|
for ex in transformed_ds[datasets.Split.TEST]:
|
|
d = {k: v for k, v in ex.items() if k in input_names}
|
|
label = label2id[ex[label_name]]
|
|
yield (d, label)
|
|
|
|
train_ds = (
|
|
tf.data.Dataset.from_generator(
|
|
gen_train,
|
|
({k: tf.int32 for k in input_names}, tf.int64),
|
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
|
)
|
|
if datasets.Split.TRAIN in transformed_ds
|
|
else None
|
|
)
|
|
|
|
if train_ds is not None:
|
|
train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN])))
|
|
|
|
val_ds = (
|
|
tf.data.Dataset.from_generator(
|
|
gen_val,
|
|
({k: tf.int32 for k in input_names}, tf.int64),
|
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
|
)
|
|
if datasets.Split.VALIDATION in transformed_ds
|
|
else None
|
|
)
|
|
|
|
if val_ds is not None:
|
|
val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION])))
|
|
|
|
test_ds = (
|
|
tf.data.Dataset.from_generator(
|
|
gen_test,
|
|
({k: tf.int32 for k in input_names}, tf.int64),
|
|
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
|
)
|
|
if datasets.Split.TEST in transformed_ds
|
|
else None
|
|
)
|
|
|
|
if test_ds is not None:
|
|
test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST])))
|
|
|
|
return train_ds, val_ds, test_ds, label2id
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
label_column_id: int = field(metadata={"help": "Which column contains the label"})
|
|
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
|
|
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
|
|
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
|
|
max_seq_length: int = field(
|
|
default=128,
|
|
metadata={
|
|
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated, sequences shorter will be padded."
|
|
},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
|
|
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
|
|
# or just modify its tokenizer_config.json.
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
if (
|
|
os.path.exists(training_args.output_dir)
|
|
and os.listdir(training_args.output_dir)
|
|
and training_args.do_train
|
|
and not training_args.overwrite_output_dir
|
|
):
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(
|
|
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
|
|
f"16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
|
|
train_file=data_args.train_file,
|
|
eval_file=data_args.dev_file,
|
|
test_file=data_args.test_file,
|
|
tokenizer=tokenizer,
|
|
label_column_id=data_args.label_column_id,
|
|
max_seq_length=data_args.max_seq_length,
|
|
)
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
|
num_labels=len(label2id),
|
|
label2id=label2id,
|
|
id2label={id: label for label, id in label2id.items()},
|
|
finetuning_task="text-classification",
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
with training_args.strategy.scope():
|
|
model = TFAutoModelForSequenceClassification.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_pt=bool(".bin" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
)
|
|
|
|
def compute_metrics(p: EvalPrediction) -> Dict:
|
|
preds = np.argmax(p.predictions, axis=1)
|
|
|
|
return {"acc": (preds == p.label_ids).mean()}
|
|
|
|
# Initialize our Trainer
|
|
trainer = TFTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
compute_metrics=compute_metrics,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
trainer.train()
|
|
trainer.save_model()
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
result = trainer.evaluate()
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
|
|
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
|
|
for key, value in result.items():
|
|
logger.info(f" {key} = {value}")
|
|
writer.write(f"{key} = {value}\n")
|
|
|
|
results.update(result)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|