transformers/tests/models/gemma3/test_image_processing_gemma3.py
Yoni Gozlan beb9b5b022
Fix Pan and Scan on batched images Gemma3 (#36864)
* process flattened images in fast image proc

* process flattened images in low proc and add tests

* remove print

* add unbalanced batch test pas image proc

* fix integration tests
2025-03-21 13:56:00 -04:00

294 lines
14 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_utils import IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import Gemma3ImageProcessor
if is_torchvision_available():
from transformers import Gemma3ImageProcessorFast
class Gemma3ImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_normalize=True,
image_mean=IMAGENET_STANDARD_MEAN,
image_std=IMAGENET_STANDARD_STD,
do_convert_rgb=True,
do_pan_and_scan=True,
pan_and_scan_min_crop_size=10,
pan_and_scan_max_num_crops=2,
pan_and_scan_min_ratio_to_activate=1.2,
):
super().__init__()
size = size if size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
self.do_pan_and_scan = do_pan_and_scan
self.pan_and_scan_min_crop_size = pan_and_scan_min_crop_size
self.pan_and_scan_max_num_crops = pan_and_scan_max_num_crops
self.pan_and_scan_min_ratio_to_activate = pan_and_scan_min_ratio_to_activate
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
"do_pan_and_scan": self.do_pan_and_scan,
"pan_and_scan_min_crop_size": self.pan_and_scan_min_crop_size,
"pan_and_scan_max_num_crops": self.pan_and_scan_max_num_crops,
"pan_and_scan_min_ratio_to_activate": self.pan_and_scan_min_ratio_to_activate,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTester.prepare_image_inputs
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class Gemma3ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = Gemma3ImageProcessor if is_vision_available() else None
fast_image_processing_class = Gemma3ImageProcessorFast if is_torchvision_available() else None
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.setUp with CLIP->Gemma3
def setUp(self):
super().setUp()
self.image_processor_tester = Gemma3ImageProcessingTester(self)
@property
# Copied from tests.models.clip.test_image_processing_clip.CLIPImageProcessingTest.image_processor_dict
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
self.assertTrue(hasattr(image_processing, "do_pan_and_scan"))
self.assertTrue(hasattr(image_processing, "pan_and_scan_min_crop_size"))
self.assertTrue(hasattr(image_processing, "pan_and_scan_max_num_crops"))
self.assertTrue(hasattr(image_processing, "pan_and_scan_min_ratio_to_activate"))
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=84)
self.assertEqual(image_processor.size, {"height": 84, "width": 84})
def test_without_pan_and_scan(self):
"""
Disable do_pan_and_scan parameter.
"""
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processor = image_processing_class.from_dict(self.image_processor_dict, do_pan_and_scan=False)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processor(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processor(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_pan_and_scan(self):
"""
Enables Pan and Scan path by choosing the correct input image resolution. If you are changing
image processor attributes for PaS, please update this test.
"""
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
"""This function prepares a list of PIL images"""
image_inputs = [np.random.randint(255, size=(3, 300, 600), dtype=np.uint8)] * 3
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
# Test not batched input, 3 images because we have base image + 2 crops
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (3, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched, 9 images because we have base image + 2 crops per each item
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (9, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched unbalanced, 9 images because we have base image + 2 crops per each item
encoded_images = image_processing(
[[image_inputs[0], image_inputs[1]], [image_inputs[2]]], return_tensors="pt"
).pixel_values
expected_output_image_shape = (9, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_pytorch(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (7, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
@unittest.skip("Gemma3 doesn't work with 4 channels due to pan and scan method")
def test_call_numpy_4_channels(self):
pass
@require_vision
@require_torch
def test_slow_fast_equivalence_batched_pas(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
crop_config = {
"do_pan_and_scan": True,
"pan_and_scan_max_num_crops": 448,
"pan_and_scan_min_crop_size": 32,
"pan_and_scan_min_ratio_to_activate": 0.3,
}
image_processor_dict = self.image_processor_dict
image_processor_dict.update(crop_config)
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
image_processor_slow = self.image_processing_class(**image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt")
torch.testing.assert_close(encoding_slow.num_crops, encoding_fast.num_crops)
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)