mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-29 17:22:25 +06:00

* Tentative enabling of `batch_size` for pipelines. * Add systematic test for pipeline batching. * Enabling batch_size on almost all pipelines - Not `zero-shot` (it's already passing stuff as batched so trickier) - Not `QA` (preprocess uses squad features, we need to switch to real tensors at this boundary. * Adding `min_length_for_response` for conversational. * Making CTC, speech mappings avaiable regardless of framework. * Attempt at fixing automatic tests (ffmpeg not enabled for fast tests) * Removing ffmpeg dependency in tests. * Small fixes. * Slight cleanup. * Adding docs and adressing comments. * Quality. * Update docs/source/main_classes/pipelines.rst Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/question_answering.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/zero_shot_classification.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Improving docs. * Update docs/source/main_classes/pipelines.rst Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com> * N -> oberved_batch_size softmax trick. * Follow `padding_side`. * Supporting image pipeline batching (and padding). * Rename `unbatch` -> `loader_batch`. * unbatch_size forgot. * Custom padding for offset mappings. * Attempt to remove librosa. * Adding require_audio. * torchaudio. * Back to using datasets librosa. * Adding help to set a pad_token on the tokenizer. * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/pipelines/base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Quality. Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
206 lines
7.3 KiB
Python
206 lines
7.3 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import (
|
|
MODEL_FOR_CTC_MAPPING,
|
|
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
|
|
AutoFeatureExtractor,
|
|
AutoTokenizer,
|
|
Speech2TextForConditionalGeneration,
|
|
Wav2Vec2ForCTC,
|
|
)
|
|
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
require_datasets,
|
|
require_tf,
|
|
require_torch,
|
|
require_torchaudio,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY, PipelineTestCaseMeta
|
|
|
|
|
|
# We can't use this mixin because it assumes TF support.
|
|
# from .test_pipelines_common import CustomInputPipelineCommonMixin
|
|
|
|
|
|
@is_pipeline_test
|
|
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
|
|
model_mapping = {
|
|
k: v
|
|
for k, v in (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
|
|
+ (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
|
|
}
|
|
|
|
def get_test_pipeline(self, model, tokenizer, feature_extractor):
|
|
if tokenizer is None:
|
|
# Side effect of no Fast Tokenizer class for these model, so skipping
|
|
# But the slow tokenizer test should still run as they're quite small
|
|
self.skipTest("No tokenizer available")
|
|
return
|
|
# return None, None
|
|
|
|
speech_recognizer = AutomaticSpeechRecognitionPipeline(
|
|
model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
|
|
)
|
|
|
|
# test with a raw waveform
|
|
audio = np.zeros((34000,))
|
|
audio2 = np.zeros((14000,))
|
|
return speech_recognizer, [audio, audio2]
|
|
|
|
def run_pipeline_test(self, speech_recognizer, examples):
|
|
audio = np.zeros((34000,))
|
|
outputs = speech_recognizer(audio)
|
|
self.assertEqual(outputs, {"text": ANY(str)})
|
|
|
|
@require_torch
|
|
@slow
|
|
def test_pt_defaults(self):
|
|
pipeline("automatic-speech-recognition", framework="pt")
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
import numpy as np
|
|
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/s2t-small-mustc-en-fr-st",
|
|
tokenizer="facebook/s2t-small-mustc-en-fr-st",
|
|
framework="pt",
|
|
)
|
|
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
|
output = speech_recognizer(waveform)
|
|
self.assertEqual(output, {"text": "(Applaudissements)"})
|
|
|
|
@require_tf
|
|
def test_small_model_tf(self):
|
|
self.skipTest("Tensorflow not supported yet.")
|
|
|
|
@require_torch
|
|
def test_torch_small_no_tokenizer_files(self):
|
|
# test that model without tokenizer file cannot be loaded
|
|
with pytest.raises(OSError):
|
|
pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
|
|
framework="pt",
|
|
)
|
|
|
|
@require_datasets
|
|
@require_torch
|
|
@slow
|
|
def test_torch_large(self):
|
|
import numpy as np
|
|
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/wav2vec2-base-960h",
|
|
tokenizer="facebook/wav2vec2-base-960h",
|
|
framework="pt",
|
|
)
|
|
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
|
output = speech_recognizer(waveform)
|
|
self.assertEqual(output, {"text": ""})
|
|
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
|
filename = ds[40]["file"]
|
|
output = speech_recognizer(filename)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
@require_datasets
|
|
@require_torch
|
|
@slow
|
|
def test_torch_speech_encoder_decoder(self):
|
|
speech_recognizer = pipeline(
|
|
task="automatic-speech-recognition",
|
|
model="facebook/s2t-wav2vec2-large-en-de",
|
|
feature_extractor="facebook/s2t-wav2vec2-large-en-de",
|
|
framework="pt",
|
|
)
|
|
|
|
from datasets import load_dataset
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
|
filename = ds[40]["file"]
|
|
output = speech_recognizer(filename)
|
|
self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_datasets
|
|
def test_simple_wav2vec2(self):
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
|
|
|
|
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
|
output = asr(waveform)
|
|
self.assertEqual(output, {"text": ""})
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
|
filename = ds[40]["file"]
|
|
output = asr(filename)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
filename = ds[40]["file"]
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
output = asr(data)
|
|
self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
|
|
|
|
@slow
|
|
@require_torch
|
|
@require_torchaudio
|
|
@require_datasets
|
|
def test_simple_s2t(self):
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")
|
|
|
|
asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)
|
|
|
|
waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
|
|
|
|
output = asr(waveform)
|
|
self.assertEqual(output, {"text": "(Applausi)"})
|
|
|
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
|
|
filename = ds[40]["file"]
|
|
output = asr(filename)
|
|
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|
|
|
|
filename = ds[40]["file"]
|
|
with open(filename, "rb") as f:
|
|
data = f.read()
|
|
output = asr(data)
|
|
self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
|