transformers/tests/test_pipelines_audio_classification.py
Nicolas Patry be236361f1
Adding batch_size support for (almost) all pipelines (#13724)
* Tentative enabling of `batch_size` for pipelines.

* Add systematic test for pipeline batching.

* Enabling batch_size on almost all pipelines

- Not `zero-shot` (it's already passing stuff as batched so trickier)
- Not `QA` (preprocess uses squad features, we need to switch to real
tensors at this boundary.

* Adding `min_length_for_response` for conversational.

* Making CTC, speech mappings avaiable regardless of framework.

* Attempt at fixing automatic tests (ffmpeg not enabled for fast tests)

* Removing ffmpeg dependency in tests.

* Small fixes.

* Slight cleanup.

* Adding docs

and adressing comments.

* Quality.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/question_answering.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/zero_shot_classification.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Improving docs.

* Update docs/source/main_classes/pipelines.rst

Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>

* N -> oberved_batch_size

softmax trick.

* Follow `padding_side`.

* Supporting image pipeline batching (and padding).

* Rename `unbatch` -> `loader_batch`.

* unbatch_size forgot.

* Custom padding for offset mappings.

* Attempt to remove librosa.

* Adding require_audio.

* torchaudio.

* Back to using datasets librosa.

* Adding help to set a pad_token on the tokenizer.

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/pipelines/base.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Quality.

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Philipp Schmid <32632186+philschmid@users.noreply.github.com>
2021-10-29 11:34:18 +02:00

130 lines
4.1 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
from transformers.pipelines import AudioClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_datasets,
require_tf,
require_torch,
require_torchaudio,
slow,
)
from .test_pipelines_common import ANY, PipelineTestCaseMeta
@is_pipeline_test
@require_torch
class AudioClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
def get_test_pipeline(self, model, tokenizer, feature_extractor):
audio_classifier = AudioClassificationPipeline(model=model, feature_extractor=feature_extractor)
# test with a raw waveform
audio = np.zeros((34000,))
audio2 = np.zeros((14000,))
return audio_classifier, [audio2, audio]
def run_pipeline_test(self, audio_classifier, examples):
audio2, audio = examples
output = audio_classifier(audio)
# by default a model is initialized with num_labels=2
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
output = audio_classifier(audio, top_k=1)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
],
)
self.run_torchaudio(audio_classifier)
@require_datasets
@require_torchaudio
def run_torchaudio(self, audio_classifier):
import datasets
# test with a local file
dataset = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio = dataset[0]["audio"]["array"]
output = audio_classifier(audio)
self.assertEqual(
output,
[
{"score": ANY(float), "label": ANY(str)},
{"score": ANY(float), "label": ANY(str)},
],
)
@require_torch
def test_small_model_pt(self):
model = "anton-l/wav2vec2-random-tiny-classifier"
audio_classifier = pipeline("audio-classification", model=model)
audio = np.ones((8000,))
output = audio_classifier(audio, top_k=4)
self.assertEqual(
nested_simplify(output, decimals=4),
[
{"score": 0.0843, "label": "on"},
{"score": 0.0840, "label": "left"},
{"score": 0.0837, "label": "off"},
{"score": 0.0835, "label": "yes"},
],
)
@require_torch
@require_datasets
@slow
def test_large_model_pt(self):
import datasets
model = "superb/wav2vec2-base-superb-ks"
audio_classifier = pipeline("audio-classification", model=model)
dataset = datasets.load_dataset("anton-l/superb_dummy", "ks", split="test")
audio = np.array(dataset[3]["speech"], dtype=np.float32)
output = audio_classifier(audio, top_k=4)
self.assertEqual(
nested_simplify(output, decimals=4),
[
{"score": 0.9809, "label": "go"},
{"score": 0.0073, "label": "up"},
{"score": 0.0064, "label": "_unknown_"},
{"score": 0.0015, "label": "down"},
],
)
@require_tf
@unittest.skip("Audio classification is not implemented for TF")
def test_small_model_tf(self):
pass