mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* Make EoMT compatible with pipeline
* Implicit patch offsets
* remove patch offsets from arg
* Modify tests
* Update example
* fix proc testcase
* Add few more args
* add pipeline test suite
* fix
* docstring fixes
* add pipeline test
* changes w.r.t review
* 🙈 MB
* should fix device mismatch
* debug
* Fixes device mismatch
* use decorator
* we can split mlp
* expected values update
---------
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
310 lines
14 KiB
Python
310 lines
14 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch EoMT Image Processor."""
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
from datasets import load_dataset
|
|
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import EomtImageProcessor
|
|
|
|
if is_torchvision_available():
|
|
from transformers import EomtImageProcessorFast
|
|
from transformers.models.eomt.modeling_eomt import EomtForUniversalSegmentationOutput
|
|
|
|
|
|
class EomtImageProcessingTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
size=None,
|
|
do_resize=True,
|
|
do_pad=True,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
num_labels=10,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.do_pad = do_pad
|
|
self.size = size if size is not None else {"shortest_edge": 18, "longest_edge": 18}
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
# for the post_process_functions
|
|
self.batch_size = 2
|
|
self.num_queries = 3
|
|
self.num_classes = 2
|
|
self.height = 18
|
|
self.width = 18
|
|
self.num_labels = num_labels
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_normalize": self.do_normalize,
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_pad": self.do_pad,
|
|
"num_labels": self.num_labels,
|
|
}
|
|
|
|
def prepare_fake_eomt_outputs(self, batch_size, patch_offsets=None):
|
|
return EomtForUniversalSegmentationOutput(
|
|
masks_queries_logits=torch.randn((batch_size, self.num_queries, self.height, self.width)),
|
|
class_queries_logits=torch.randn((batch_size, self.num_queries, self.num_classes + 1)),
|
|
patch_offsets=patch_offsets,
|
|
)
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
def prepare_semantic_single_inputs():
|
|
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
|
example = ds[0]
|
|
return example["image"], example["map"]
|
|
|
|
|
|
def prepare_semantic_batch_inputs():
|
|
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
|
|
return list(ds["image"][:2]), list(ds["map"][:2])
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class EomtImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = EomtImageProcessor if is_vision_available() else None
|
|
fast_image_processing_class = EomtImageProcessorFast if is_torchvision_available() else None
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
self.image_processor_tester = EomtImageProcessingTester(self)
|
|
self.model_id = "tue-mps/coco_panoptic_eomt_large_640"
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "rescale_factor"))
|
|
self.assertTrue(hasattr(image_processing, "resample"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 18})
|
|
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
|
self.assertEqual(image_processor.size, {"shortest_edge": 42})
|
|
|
|
def test_call_numpy(self):
|
|
for image_processing_class in self.image_processor_list:
|
|
# Initialize image_processing
|
|
image_processing = image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, np.ndarray)
|
|
|
|
# Test not batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (2, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
@unittest.skip(reason="Not supported")
|
|
def test_call_numpy_4_channels(self):
|
|
pass
|
|
|
|
def test_call_pil(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, Image.Image)
|
|
|
|
# Test Non batched input
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
# Test batched
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (2, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
def test_call_pytorch(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
|
|
|
|
for image in image_inputs:
|
|
self.assertIsInstance(image, torch.Tensor)
|
|
|
|
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (1, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
|
|
expected_output_image_shape = (2, 3, 18, 18)
|
|
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
|
|
|
|
def test_slow_fast_equivalence(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
dummy_image, dummy_map = prepare_semantic_single_inputs()
|
|
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
image_encoding_slow = image_processor_slow(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
|
|
image_encoding_fast = image_processor_fast(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
|
|
|
|
self.assertTrue(torch.allclose(image_encoding_slow.pixel_values, image_encoding_fast.pixel_values, atol=1e-1))
|
|
self.assertLessEqual(
|
|
torch.mean(torch.abs(image_encoding_slow.pixel_values - image_encoding_fast.pixel_values)).item(), 1e-3
|
|
)
|
|
|
|
# Lets check whether 99.9% of mask_labels values match or not.
|
|
match_ratio = (image_encoding_slow.mask_labels[0] == image_encoding_fast.mask_labels[0]).float().mean().item()
|
|
self.assertGreaterEqual(match_ratio, 0.999, "Mask labels do not match between slow and fast image processor.")
|
|
|
|
def test_slow_fast_equivalence_batched(self):
|
|
if not self.test_slow_image_processor or not self.test_fast_image_processor:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test")
|
|
|
|
if self.image_processing_class is None or self.fast_image_processing_class is None:
|
|
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
|
|
|
|
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
|
|
self.skipTest(
|
|
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
|
|
)
|
|
|
|
dummy_images, dummy_maps = prepare_semantic_batch_inputs()
|
|
|
|
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
|
|
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
|
|
|
|
encoding_slow = image_processor_slow(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
|
|
encoding_fast = image_processor_fast(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
|
|
|
|
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
|
|
self.assertLessEqual(
|
|
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
|
|
)
|
|
|
|
for idx in range(len(dummy_maps)):
|
|
match_ratio = (encoding_slow.mask_labels[idx] == encoding_fast.mask_labels[idx]).float().mean().item()
|
|
self.assertGreaterEqual(
|
|
match_ratio, 0.999, "Mask labels do not match between slow and fast image processors."
|
|
)
|
|
|
|
def test_post_process_semantic_segmentation(self):
|
|
processor = self.image_processing_class(**self.image_processor_dict)
|
|
# Set longest_edge to None to test for semantic segmentatiom.
|
|
processor.size = {"shortest_edge": 18, "longest_edge": None}
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
inputs = processor(images=image, do_split_image=True, return_tensors="pt")
|
|
patch_offsets = inputs["patch_offsets"]
|
|
|
|
target_sizes = [image.size[::-1]]
|
|
|
|
# For semantic segmentation, the BS of output is 2 coz, two patches are created for the image.
|
|
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(inputs["pixel_values"].shape[0], patch_offsets)
|
|
segmentation = processor.post_process_semantic_segmentation(outputs, target_sizes)
|
|
|
|
self.assertEqual(segmentation[0].shape, (image.height, image.width))
|
|
|
|
def test_post_process_panoptic_segmentation(self):
|
|
processor = self.image_processing_class(**self.image_processor_dict)
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
original_sizes = [image.size[::-1], image.size[::-1]]
|
|
|
|
# lets test for batched input of 2
|
|
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(2)
|
|
segmentation = processor.post_process_panoptic_segmentation(outputs, original_sizes)
|
|
|
|
self.assertTrue(len(segmentation) == 2)
|
|
for el in segmentation:
|
|
self.assertTrue("segmentation" in el)
|
|
self.assertTrue("segments_info" in el)
|
|
self.assertEqual(type(el["segments_info"]), list)
|
|
self.assertEqual(el["segmentation"].shape, (image.height, image.width))
|
|
|
|
def test_post_process_instance_segmentation(self):
|
|
processor = self.image_processing_class(**self.image_processor_dict)
|
|
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
|
|
|
original_sizes = [image.size[::-1], image.size[::-1]]
|
|
|
|
# lets test for batched input of 2
|
|
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(2)
|
|
segmentation = processor.post_process_instance_segmentation(outputs, original_sizes)
|
|
|
|
self.assertTrue(len(segmentation) == 2)
|
|
for el in segmentation:
|
|
self.assertTrue("segmentation" in el)
|
|
self.assertTrue("segments_info" in el)
|
|
self.assertEqual(type(el["segments_info"]), list)
|
|
self.assertEqual(el["segmentation"].shape, (image.height, image.width))
|