transformers/tests/models/eomt/test_image_processing_eomt.py
Yaswanth Gali b61023a1b7
🚨🚨🚨 [eomt] make EoMT compatible with pipeline (#39122)
* Make EoMT compatible with pipeline

* Implicit patch offsets

* remove patch offsets from arg

* Modify tests

* Update example

* fix proc testcase

* Add few more args

* add pipeline test suite

* fix

* docstring fixes

* add pipeline test

* changes w.r.t review

* 🙈 MB

* should fix device mismatch

* debug

* Fixes device mismatch

* use decorator

* we can split mlp

* expected values update

---------

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
2025-07-02 12:25:26 +01:00

310 lines
14 KiB
Python

# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch EoMT Image Processor."""
import unittest
import numpy as np
import requests
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import EomtImageProcessor
if is_torchvision_available():
from transformers import EomtImageProcessorFast
from transformers.models.eomt.modeling_eomt import EomtForUniversalSegmentationOutput
class EomtImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
size=None,
do_resize=True,
do_pad=True,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
num_labels=10,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.do_pad = do_pad
self.size = size if size is not None else {"shortest_edge": 18, "longest_edge": 18}
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
# for the post_process_functions
self.batch_size = 2
self.num_queries = 3
self.num_classes = 2
self.height = 18
self.width = 18
self.num_labels = num_labels
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
"num_labels": self.num_labels,
}
def prepare_fake_eomt_outputs(self, batch_size, patch_offsets=None):
return EomtForUniversalSegmentationOutput(
masks_queries_logits=torch.randn((batch_size, self.num_queries, self.height, self.width)),
class_queries_logits=torch.randn((batch_size, self.num_queries, self.num_classes + 1)),
patch_offsets=patch_offsets,
)
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
def prepare_semantic_single_inputs():
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
example = ds[0]
return example["image"], example["map"]
def prepare_semantic_batch_inputs():
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
return list(ds["image"][:2]), list(ds["map"][:2])
@require_torch
@require_vision
class EomtImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = EomtImageProcessor if is_vision_available() else None
fast_image_processing_class = EomtImageProcessorFast if is_torchvision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = EomtImageProcessingTester(self)
self.model_id = "tue-mps/coco_panoptic_eomt_large_640"
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "resample"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (2, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
@unittest.skip(reason="Not supported")
def test_call_numpy_4_channels(self):
pass
def test_call_pil(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test Non batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (2, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_call_pytorch(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = (1, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = (2, 3, 18, 18)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
def test_slow_fast_equivalence(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
dummy_image, dummy_map = prepare_semantic_single_inputs()
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
image_encoding_slow = image_processor_slow(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
image_encoding_fast = image_processor_fast(dummy_image, segmentation_maps=dummy_map, return_tensors="pt")
self.assertTrue(torch.allclose(image_encoding_slow.pixel_values, image_encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(image_encoding_slow.pixel_values - image_encoding_fast.pixel_values)).item(), 1e-3
)
# Lets check whether 99.9% of mask_labels values match or not.
match_ratio = (image_encoding_slow.mask_labels[0] == image_encoding_fast.mask_labels[0]).float().mean().item()
self.assertGreaterEqual(match_ratio, 0.999, "Mask labels do not match between slow and fast image processor.")
def test_slow_fast_equivalence_batched(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images, dummy_maps = prepare_semantic_batch_inputs()
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, segmentation_maps=dummy_maps, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
for idx in range(len(dummy_maps)):
match_ratio = (encoding_slow.mask_labels[idx] == encoding_fast.mask_labels[idx]).float().mean().item()
self.assertGreaterEqual(
match_ratio, 0.999, "Mask labels do not match between slow and fast image processors."
)
def test_post_process_semantic_segmentation(self):
processor = self.image_processing_class(**self.image_processor_dict)
# Set longest_edge to None to test for semantic segmentatiom.
processor.size = {"shortest_edge": 18, "longest_edge": None}
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
inputs = processor(images=image, do_split_image=True, return_tensors="pt")
patch_offsets = inputs["patch_offsets"]
target_sizes = [image.size[::-1]]
# For semantic segmentation, the BS of output is 2 coz, two patches are created for the image.
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(inputs["pixel_values"].shape[0], patch_offsets)
segmentation = processor.post_process_semantic_segmentation(outputs, target_sizes)
self.assertEqual(segmentation[0].shape, (image.height, image.width))
def test_post_process_panoptic_segmentation(self):
processor = self.image_processing_class(**self.image_processor_dict)
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
original_sizes = [image.size[::-1], image.size[::-1]]
# lets test for batched input of 2
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(2)
segmentation = processor.post_process_panoptic_segmentation(outputs, original_sizes)
self.assertTrue(len(segmentation) == 2)
for el in segmentation:
self.assertTrue("segmentation" in el)
self.assertTrue("segments_info" in el)
self.assertEqual(type(el["segments_info"]), list)
self.assertEqual(el["segmentation"].shape, (image.height, image.width))
def test_post_process_instance_segmentation(self):
processor = self.image_processing_class(**self.image_processor_dict)
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
original_sizes = [image.size[::-1], image.size[::-1]]
# lets test for batched input of 2
outputs = self.image_processor_tester.prepare_fake_eomt_outputs(2)
segmentation = processor.post_process_instance_segmentation(outputs, original_sizes)
self.assertTrue(len(segmentation) == 2)
for el in segmentation:
self.assertTrue("segmentation" in el)
self.assertTrue("segments_info" in el)
self.assertEqual(type(el["segments_info"]), list)
self.assertEqual(el["segmentation"].shape, (image.height, image.width))