mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-15 02:28:24 +06:00

* splitting fast and slow tokenizers [WIP] * [WIP] splitting sentencepiece and tokenizers dependencies * update dummy objects * add name_or_path to models and tokenizers * prefix added to file names * prefix * styling + quality * spliting all the tokenizer files - sorting sentencepiece based ones * update tokenizer version up to 0.9.0 * remove hard dependency on sentencepiece 🎉 * and removed hard dependency on tokenizers 🎉 * update conversion script * update missing models * fixing tests * move test_tokenization_fast to main tokenization tests - fix bugs * bump up tokenizers * fix bert_generation * update ad fix several tokenizers * keep sentencepiece in deps for now * fix funnel and deberta tests * fix fsmt * fix marian tests * fix layoutlm * fix squeezebert and gpt2 * fix T5 tokenization * fix xlnet tests * style * fix mbart * bump up tokenizers to 0.9.2 * fix model tests * fix tf models * fix seq2seq examples * fix tests without sentencepiece * fix slow => fast conversion without sentencepiece * update auto and bert generation tests * fix mbart tests * fix auto and common test without tokenizers * fix tests without tokenizers * clean up tests lighten up when tokenizers + sentencepiece are both off * style quality and tests fixing * add sentencepiece to doc/examples reqs * leave sentencepiece on for now * style quality split hebert and fix pegasus * WIP Herbert fast * add sample_text_no_unicode and fix hebert tokenization * skip FSMT example test for now * fix style * fix fsmt in example tests * update following Lysandre and Sylvain's comments * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
120 lines
5.3 KiB
Python
120 lines
5.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import (
|
|
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
|
AutoTokenizer,
|
|
BertTokenizer,
|
|
BertTokenizerFast,
|
|
GPT2Tokenizer,
|
|
GPT2TokenizerFast,
|
|
RobertaTokenizer,
|
|
RobertaTokenizerFast,
|
|
)
|
|
from transformers.configuration_auto import AutoConfig
|
|
from transformers.configuration_roberta import RobertaConfig
|
|
from transformers.testing_utils import (
|
|
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
|
|
DUMMY_UNKWOWN_IDENTIFIER,
|
|
SMALL_MODEL_IDENTIFIER,
|
|
require_tokenizers,
|
|
)
|
|
from transformers.tokenization_auto import TOKENIZER_MAPPING
|
|
|
|
|
|
class AutoTokenizerTest(unittest.TestCase):
|
|
# @slow
|
|
def test_tokenizer_from_pretrained(self):
|
|
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
self.assertIsNotNone(tokenizer)
|
|
self.assertIsInstance(tokenizer, (GPT2Tokenizer, GPT2TokenizerFast))
|
|
self.assertGreater(len(tokenizer), 0)
|
|
|
|
def test_tokenizer_from_pretrained_identifier(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(SMALL_MODEL_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
def test_tokenizer_from_model_type(self):
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
|
|
self.assertIsInstance(tokenizer, (RobertaTokenizer, RobertaTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 20)
|
|
|
|
def test_tokenizer_from_tokenizer_class(self):
|
|
config = AutoConfig.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER)
|
|
self.assertIsInstance(config, RobertaConfig)
|
|
# Check that tokenizer_type ≠ model_type
|
|
tokenizer = AutoTokenizer.from_pretrained(DUMMY_DIFF_TOKENIZER_IDENTIFIER, config=config)
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
self.assertEqual(tokenizer.vocab_size, 12)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_with_correct_config(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
tokenizer = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased")
|
|
self.assertIsInstance(tokenizer, (BertTokenizer, BertTokenizerFast))
|
|
|
|
if isinstance(tokenizer, BertTokenizer):
|
|
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case, False)
|
|
else:
|
|
self.assertEqual(tokenizer.do_lower_case, False)
|
|
|
|
self.assertEqual(tokenizer.max_len, 512)
|
|
|
|
@require_tokenizers
|
|
def test_tokenizer_identifier_non_existent(self):
|
|
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
|
|
with self.assertRaises(EnvironmentError):
|
|
_ = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists")
|
|
|
|
def test_parents_and_children_in_mappings(self):
|
|
# Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
|
|
# by the parents and will return the wrong configuration type when using auto models
|
|
|
|
mappings = (TOKENIZER_MAPPING,)
|
|
|
|
for mapping in mappings:
|
|
mapping = tuple(mapping.items())
|
|
for index, (child_config, (child_model_py, child_model_fast)) in enumerate(mapping[1:]):
|
|
for parent_config, (parent_model_py, parent_model_fast) in mapping[: index + 1]:
|
|
with self.subTest(
|
|
msg="Testing if {} is child of {}".format(child_config.__name__, parent_config.__name__)
|
|
):
|
|
self.assertFalse(issubclass(child_config, parent_config))
|
|
|
|
# Check for Slow tokenizer implementation if provided
|
|
if child_model_py and parent_model_py:
|
|
self.assertFalse(issubclass(child_model_py, parent_model_py))
|
|
|
|
# Check for Fast tokenizer implementation if provided
|
|
if child_model_fast and parent_model_fast:
|
|
self.assertFalse(issubclass(child_model_fast, parent_model_fast))
|
|
|
|
@require_tokenizers
|
|
def test_from_pretrained_use_fast_toggle(self):
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased"), BertTokenizer)
|
|
self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased", use_fast=True), BertTokenizerFast)
|