mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00

* splitting fast and slow tokenizers [WIP] * [WIP] splitting sentencepiece and tokenizers dependencies * update dummy objects * add name_or_path to models and tokenizers * prefix added to file names * prefix * styling + quality * spliting all the tokenizer files - sorting sentencepiece based ones * update tokenizer version up to 0.9.0 * remove hard dependency on sentencepiece 🎉 * and removed hard dependency on tokenizers 🎉 * update conversion script * update missing models * fixing tests * move test_tokenization_fast to main tokenization tests - fix bugs * bump up tokenizers * fix bert_generation * update ad fix several tokenizers * keep sentencepiece in deps for now * fix funnel and deberta tests * fix fsmt * fix marian tests * fix layoutlm * fix squeezebert and gpt2 * fix T5 tokenization * fix xlnet tests * style * fix mbart * bump up tokenizers to 0.9.2 * fix model tests * fix tf models * fix seq2seq examples * fix tests without sentencepiece * fix slow => fast conversion without sentencepiece * update auto and bert generation tests * fix mbart tests * fix auto and common test without tokenizers * fix tests without tokenizers * clean up tests lighten up when tokenizers + sentencepiece are both off * style quality and tests fixing * add sentencepiece to doc/examples reqs * leave sentencepiece on for now * style quality split hebert and fix pegasus * WIP Herbert fast * add sample_text_no_unicode and fix hebert tokenization * skip FSMT example test for now * fix style * fix fsmt in example tests * update following Lysandre and Sylvain's comments * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
297 lines
12 KiB
Python
297 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 XXX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for model XXX."""
|
|
|
|
|
|
import collections
|
|
import logging
|
|
import os
|
|
from typing import List, Optional, Tuple
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
####################################################
|
|
# In this template, replace all the XXX (various casings) with your model name
|
|
####################################################
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to file names for serializing Tokenizer instances
|
|
####################################################
|
|
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to pretrained vocabulary URL for all the model shortcut names.
|
|
####################################################
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
"vocab_file": {
|
|
"xxx-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-base-uncased-vocab.txt",
|
|
"xxx-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/xxx-large-uncased-vocab.txt",
|
|
}
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to max length of inputs
|
|
####################################################
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
"xxx-base-uncased": 512,
|
|
"xxx-large-uncased": 512,
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to a dictionary of additional
|
|
# keyword arguments for Tokenizer `__init__`.
|
|
# To be used for checkpoint specific configurations.
|
|
####################################################
|
|
PRETRAINED_INIT_CONFIGURATION = {
|
|
"xxx-base-uncased": {"do_lower_case": True},
|
|
"xxx-large-uncased": {"do_lower_case": True},
|
|
}
|
|
|
|
|
|
def load_vocab(vocab_file):
|
|
"""Loads a vocabulary file into a dictionary."""
|
|
vocab = collections.OrderedDict()
|
|
with open(vocab_file, "r", encoding="utf-8") as reader:
|
|
tokens = reader.readlines()
|
|
for index, token in enumerate(tokens):
|
|
token = token.rstrip("\n")
|
|
vocab[token] = index
|
|
return vocab
|
|
|
|
|
|
class XxxTokenizer(PreTrainedTokenizer):
|
|
r"""
|
|
Constructs a XXX tokenizer. Based on XXX.
|
|
|
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
|
Users should refer to this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (:obj:`str`):
|
|
File containing the vocabulary.
|
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Whether or not to lowercase the input when tokenizing.
|
|
do_basic_tokenize (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
|
Whether ot not to do basic tokenization before WordPiece.
|
|
never_split (:obj:`Iterable`, `optional`):
|
|
Collection of tokens which will never be split during tokenization. Only has an effect when
|
|
:obj:`do_basic_tokenize=True`
|
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`"[UNK]"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
|
|
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
|
|
for sequence classification or for a text and a question for question answering.
|
|
It is also used as the last token of a sequence built with special tokens.
|
|
pad_token (:obj:`str`, `optional`, defaults to :obj:`"[PAD]"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
|
|
The classifier token which is used when doing sequence classification (classification of the whole
|
|
sequence instead of per-token classification). It is the first token of the sequence when built with
|
|
special tokens.
|
|
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
|
|
The token used for masking values. This is the token used when training this model with masked language
|
|
modeling. This is the token which the model will try to predict.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
do_lower_case=True,
|
|
do_basic_tokenize=True,
|
|
never_split=None,
|
|
unk_token="[UNK]",
|
|
sep_token="[SEP]",
|
|
pad_token="[PAD]",
|
|
cls_token="[CLS]",
|
|
mask_token="[MASK]",
|
|
tokenize_chinese_chars=True,
|
|
**kwargs
|
|
):
|
|
super().__init__(
|
|
unk_token=unk_token,
|
|
sep_token=sep_token,
|
|
pad_token=pad_token,
|
|
cls_token=cls_token,
|
|
mask_token=mask_token,
|
|
**kwargs,
|
|
)
|
|
|
|
if not os.path.isfile(vocab_file):
|
|
raise ValueError(
|
|
"Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained "
|
|
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)
|
|
)
|
|
self.vocab = load_vocab(vocab_file)
|
|
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
|
self.do_basic_tokenize = do_basic_tokenize
|
|
# Replace and adapt
|
|
# if do_basic_tokenize:
|
|
# self.basic_tokenizer = BasicTokenizer(
|
|
# do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars
|
|
# )
|
|
# self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return len(self.vocab)
|
|
|
|
def get_vocab(self):
|
|
return dict(self.vocab, **self.added_tokens_encoder)
|
|
|
|
def _tokenize(self, text):
|
|
split_tokens = []
|
|
if self.do_basic_tokenize:
|
|
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
|
|
|
# If the token is part of the never_split set
|
|
if token in self.basic_tokenizer.never_split:
|
|
split_tokens.append(token)
|
|
else:
|
|
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
|
else:
|
|
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
|
return split_tokens
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str) in an id using the vocab. """
|
|
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
return self.ids_to_tokens.get(index, self.unk_token)
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
out_string = " ".join(tokens).replace(" ##", "").strip()
|
|
return out_string
|
|
|
|
def build_inputs_with_special_tokens(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks
|
|
by concatenating and adding special tokens.
|
|
A XXX sequence has the following format:
|
|
|
|
- single sequence: ``[CLS] X [SEP]``
|
|
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
|
|
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs to which the special tokens will be added.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
|
|
"""
|
|
if token_ids_1 is None:
|
|
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
sep = [self.sep_token_id]
|
|
return cls + token_ids_0 + sep + token_ids_1 + sep
|
|
|
|
def get_special_tokens_mask(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
|
) -> List[int]:
|
|
"""
|
|
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
|
special tokens using the tokenizer ``prepare_for_model`` method.
|
|
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
|
Whether or not the token list is already formatted with special tokens for the model.
|
|
|
|
Returns:
|
|
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
|
"""
|
|
|
|
if already_has_special_tokens:
|
|
if token_ids_1 is not None:
|
|
raise ValueError(
|
|
"You should not supply a second sequence if the provided sequence of "
|
|
"ids is already formated with special tokens for the model."
|
|
)
|
|
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
|
|
|
if token_ids_1 is not None:
|
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
|
return [1] + ([0] * len(token_ids_0)) + [1]
|
|
|
|
def create_token_type_ids_from_sequences(
|
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
|
) -> List[int]:
|
|
"""
|
|
Create a mask from the two sequences passed to be used in a sequence-pair classification task.
|
|
A BERT sequence pair mask has the following format:
|
|
|
|
::
|
|
|
|
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
|
| first sequence | second sequence |
|
|
|
|
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
|
|
|
|
Args:
|
|
token_ids_0 (:obj:`List[int]`):
|
|
List of IDs.
|
|
token_ids_1 (:obj:`List[int]`, `optional`):
|
|
Optional second list of IDs for sequence pairs.
|
|
|
|
Returns:
|
|
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
|
|
sequence(s).
|
|
"""
|
|
sep = [self.sep_token_id]
|
|
cls = [self.cls_token_id]
|
|
if token_ids_1 is None:
|
|
return len(cls + token_ids_0 + sep) * [0]
|
|
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
index = 0
|
|
if os.path.isdir(save_directory):
|
|
vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
else:
|
|
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
|
with open(vocab_file, "w", encoding="utf-8") as writer:
|
|
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
|
if index != token_index:
|
|
logger.warning(
|
|
"Saving vocabulary to {}: vocabulary indices are not consecutive."
|
|
" Please check that the vocabulary is not corrupted!".format(vocab_file)
|
|
)
|
|
index = token_index
|
|
writer.write(token + "\n")
|
|
index += 1
|
|
return (vocab_file,)
|