mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00

* splitting fast and slow tokenizers [WIP] * [WIP] splitting sentencepiece and tokenizers dependencies * update dummy objects * add name_or_path to models and tokenizers * prefix added to file names * prefix * styling + quality * spliting all the tokenizer files - sorting sentencepiece based ones * update tokenizer version up to 0.9.0 * remove hard dependency on sentencepiece 🎉 * and removed hard dependency on tokenizers 🎉 * update conversion script * update missing models * fixing tests * move test_tokenization_fast to main tokenization tests - fix bugs * bump up tokenizers * fix bert_generation * update ad fix several tokenizers * keep sentencepiece in deps for now * fix funnel and deberta tests * fix fsmt * fix marian tests * fix layoutlm * fix squeezebert and gpt2 * fix T5 tokenization * fix xlnet tests * style * fix mbart * bump up tokenizers to 0.9.2 * fix model tests * fix tf models * fix seq2seq examples * fix tests without sentencepiece * fix slow => fast conversion without sentencepiece * update auto and bert generation tests * fix mbart tests * fix auto and common test without tokenizers * fix tests without tokenizers * clean up tests lighten up when tokenizers + sentencepiece are both off * style quality and tests fixing * add sentencepiece to doc/examples reqs * leave sentencepiece on for now * style quality split hebert and fix pegasus * WIP Herbert fast * add sample_text_no_unicode and fix hebert tokenization * skip FSMT example test for now * fix style * fix fsmt in example tests * update following Lysandre and Sylvain's comments * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/testing_utils.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * Update src/transformers/tokenization_utils_base.py Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
164 lines
6.0 KiB
Python
164 lines
6.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Tokenization class for model Reformer."""
|
|
|
|
|
|
import os
|
|
from shutil import copyfile
|
|
from typing import Dict, Optional, Tuple
|
|
|
|
import sentencepiece as spm
|
|
|
|
from .tokenization_utils import PreTrainedTokenizer
|
|
from .utils import logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
SPIECE_UNDERLINE = "▁"
|
|
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to file names for serializing Tokenizer instances
|
|
####################################################
|
|
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
|
|
|
####################################################
|
|
# Mapping from the keyword arguments names of Tokenizer `__init__`
|
|
# to pretrained vocabulary URL for all the model shortcut names.
|
|
####################################################
|
|
PRETRAINED_VOCAB_FILES_MAP = {
|
|
"vocab_file": {
|
|
"google/reformer-crime-and-punishment": "https://cdn.huggingface.co/google/reformer-crime-and-punishment/spiece.model"
|
|
}
|
|
}
|
|
|
|
####################################################
|
|
# Mapping from model shortcut names to max length of inputs
|
|
####################################################
|
|
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
|
"google/reformer-crime-and-punishment": 524288,
|
|
}
|
|
|
|
|
|
class ReformerTokenizer(PreTrainedTokenizer):
|
|
"""
|
|
Construct a Reformer tokenizer. Based on `SentencePiece <https://github.com/google/sentencepiece>`__ .
|
|
|
|
This tokenizer inherits from :class:`~transformers.PreTrainedTokenizer` which contains most of the main methods.
|
|
Users should refer to this superclass for more information regarding those methods.
|
|
|
|
Args:
|
|
vocab_file (:obj:`str`):
|
|
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that
|
|
contains the vocabulary necessary to instantiate a tokenizer.
|
|
eos_token (:obj:`str`, `optional`, defaults to :obj:`"</s>"`):
|
|
The end of sequence token.
|
|
|
|
.. note::
|
|
|
|
When building a sequence using special tokens, this is not the token that is used for the end
|
|
of sequence. The token used is the :obj:`sep_token`.
|
|
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
|
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
|
token instead.
|
|
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
|
|
The token used for padding, for example when batching sequences of different lengths.
|
|
additional_special_tokens (:obj:`List[str]`, `optional`):
|
|
Additional special tokens used by the tokenizer.
|
|
"""
|
|
|
|
vocab_files_names = VOCAB_FILES_NAMES
|
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
|
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
|
model_input_names = ["attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_file,
|
|
eos_token="</s>",
|
|
unk_token="<unk>",
|
|
pad_token="<pad>",
|
|
additional_special_tokens=[],
|
|
**kwargs
|
|
):
|
|
super().__init__(
|
|
eos_token=eos_token,
|
|
unk_token=unk_token,
|
|
pad_token=pad_token,
|
|
additional_special_tokens=additional_special_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
self.vocab_file = vocab_file
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(vocab_file)
|
|
|
|
@property
|
|
def vocab_size(self):
|
|
return self.sp_model.get_piece_size()
|
|
|
|
def get_vocab(self) -> Dict[str, int]:
|
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
|
vocab.update(self.added_tokens_encoder)
|
|
return vocab
|
|
|
|
def __getstate__(self):
|
|
state = self.__dict__.copy()
|
|
state["sp_model"] = None
|
|
return state
|
|
|
|
def __setstate__(self, d):
|
|
self.__dict__ = d
|
|
self.sp_model = spm.SentencePieceProcessor()
|
|
self.sp_model.Load(self.vocab_file)
|
|
|
|
def _tokenize(self, text, sample=False):
|
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
|
|
if not sample:
|
|
pieces = self.sp_model.EncodeAsPieces(text)
|
|
else:
|
|
pieces = self.sp_model.SampleEncodeAsPieces(text, 64, 0.1)
|
|
return pieces
|
|
|
|
def _convert_token_to_id(self, token):
|
|
""" Converts a token (str) in an id using the vocab. """
|
|
return self.sp_model.piece_to_id(token)
|
|
|
|
def _convert_id_to_token(self, index):
|
|
"""Converts an index (integer) in a token (str) using the vocab."""
|
|
if index < self.sp_model.get_piece_size():
|
|
token = self.sp_model.IdToPiece(index)
|
|
return token
|
|
|
|
def convert_tokens_to_string(self, tokens):
|
|
""" Converts a sequence of tokens (string) in a single string. """
|
|
out_string = self.sp_model.decode_pieces(tokens)
|
|
return out_string
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
|
if not os.path.isdir(save_directory):
|
|
logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
|
|
return
|
|
out_vocab_file = os.path.join(
|
|
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
|
)
|
|
|
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
|
copyfile(self.vocab_file, out_vocab_file)
|
|
|
|
return (out_vocab_file,)
|