transformers/tests/pipelines/test_pipelines_image_text_to_text.py
Yoni Gozlan b99ca4d28b
Add support for OpenAI api "image_url" input in chat for image-text-to-text pipeline (#34562)
* add support for openai api image_url input

* change continue to elif

* Explicitely add support for OpenAI/TGI chat format

* rewrite content to transformers chat format and add tests

* Add support for typing of image type in chat templates

* add base64 to possible image types

* refactor nesting
2024-11-19 11:08:37 -05:00

305 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import unittest
from transformers import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING, is_vision_available
from transformers.pipelines import ImageTextToTextPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageTextToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING
def get_test_pipeline(self, model, tokenizer, processor, image_processor, torch_dtype="float32"):
pipe = ImageTextToTextPipeline(model=model, processor=processor, torch_dtype=torch_dtype)
image_token = getattr(processor.tokenizer, "image_token", "")
examples = [
{
"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"text": f"{image_token}This is a ",
},
{
"images": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"text": f"{image_token}Here I see a ",
},
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples[0].get("images"), text=examples[0].get("text"))
self.assertEqual(
outputs,
[
{"input_text": ANY(str), "generated_text": ANY(str)},
],
)
@require_torch
def test_small_model_pt_token(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
text = "<image> What this is? Assistant: This is"
outputs = pipe(image, text=text)
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
}
],
)
outputs = pipe([image, image], text=[text, text])
self.assertEqual(
outputs,
[
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
{
"input_text": "<image> What this is? Assistant: This is",
"generated_text": "<image> What this is? Assistant: This is a photo of two cats lying on a pink blanket. The cats are sleeping and appear to be comfortable",
},
],
)
@require_torch
def test_consistent_batching_behaviour(self):
pipe = pipeline("image-text-to-text", model="microsoft/kosmos-2-patch14-224")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe([image, image], text=[prompt, prompt])
outputs_batched = pipe([image, image], text=[prompt, prompt], batch_size=2)
self.assertEqual(outputs, outputs_batched)
@slow
@require_torch
def test_model_pt_chat_template(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
image_ny = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
image_chicago = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
}
]
outputs = pipe([image_ny, image_chicago], text=messages)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
}
],
"generated_text": [
{
"role": "user",
"content": [
{"type": "text", "text": "Whats the difference between these two images?"},
{"type": "image"},
{"type": "image"},
],
},
{
"role": "assistant",
"content": "The first image shows a statue of the Statue of Liberty in the foreground, while the second image shows",
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_continue_final_message(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "There is a dog and"},
],
},
]
outputs = pipe(text=messages)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{"role": "assistant", "content": [{"type": "text", "text": "There is a dog and"}]},
],
"generated_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "There is a dog and a person in the image. The dog is sitting on the sand, and the person is sitting on",
}
],
},
],
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_new_text(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-interleave-qwen-0.5b-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
outputs = pipe(text=messages, return_full_text=False)
self.assertEqual(
outputs,
[
{
"input_text": [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
],
"generated_text": "In the image, a woman is sitting on the sandy beach, her legs crossed in a relaxed manner",
}
],
)
@slow
@require_torch
def test_model_pt_chat_template_image_url(self):
pipe = pipeline("image-text-to-text", model="llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
},
},
{"type": "text", "text": "Describe this image in one sentence."},
],
}
]
outputs = pipe(text=messages, return_full_text=False, max_new_tokens=10)[0]["generated_text"]
self.assertEqual(outputs, "The image captures the iconic Statue of Liberty, a")
@slow
@require_torch
def test_model_pt_chat_template_image_url_base64(self):
with open("./tests/fixtures/tests_samples/COCO/000000039769.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
pipe = pipeline("image-text-to-text", model="llava-hf/llava-onevision-qwen2-0.5b-ov-hf")
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
},
{"type": "text", "text": "Describe this image in one sentence."},
],
}
]
outputs = pipe(text=messages, return_full_text=False, max_new_tokens=10)[0]["generated_text"]
self.assertEqual(outputs, "Two cats are sleeping on a pink blanket, with")