transformers/tests/models/opt/test_modeling_opt.py
Younes Belkada b971c769e8
Add OPT (#17088)
* First version - OPT model

* Final changes

- putting use cache to False

* few changes

- remove commented block

* few changes

- remove unecessary files

* fix style issues

* few changes

- remove a test file
- added the logits test

* Update src/transformers/models/auto/tokenization_auto.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* add gen tests

* few changes

- rm mask filling example on docstring

* few changes

- remove useless args

* some changes

- more tests should pass now
- needs to clean more
- documentation still needs to be done

* fix code quality

* major changes

- change attention architecture to BART-like
- modify some tests
- style fix

* rm useless classes

- remove opt for:
- QA
- cond generation
- seq classif

* Removed autodoc calls to non-existant classes

TOkenizers are not implemented

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/__init__.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Update src/transformers/models/auto/modeling_tf_auto.py

Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>

* Replaced OPTTokeniser with GPT2 tokenizer

* added GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")

* Removed OPTTokenizer

* make style

* Make style replaces

``` ...).unsqueeze(```
by
``` >>>).unsqueeze(```

* make repo consistency

* Removed PretrainedOPTModel

* fix opt.mdx removed other heads

* fix init, removed 3 heads

* removed heads

* finished cleaning head

* removed seauence classif and question answering

* removed unused imports

* removed useless dummy object for QA, SC and CG

* removed tests for removed useless dummy object for QA, SC and CG

* Removed head_mask using encoder layers which don't exist

* fixed test

* fix line

* added OPT to toctree

* Updated model path with pushed weigths

* fix model path

* fixed code quality

* fixed embeddings and generation tests

* update paths

* clean comments

* removed OPTClassificationHead for sentence classification

* renamed hidden layer

* renamed num layers to standard num_hidden_layers

* num_attention_heads fix

* changes for 125m

* add first version for 125m

* add first version - flax

* add new version

* causal LM output

* replace output type with BaseModelOutputWithPastAndCrossAttentions

* revert working config from 150m to 350m

* clean

* removed decoder input ids

* fixed embed dim

* more embed_dim issues

* make style + removed enc_dec test

* update falx model

* removed troublesome copy

* added is_encoder_decoder=False to config

* added set_input emb fuinction to model class

* requires torch on embed test

* use head mask instead of decoder head mask input param solves a test

* 8 test remaining, update

* Updated create_and_check_decoder_model_past_large_inputs

* Make style

* update op tokenizer with condition

* make style

* See if I can push

* some clean up

* remove linear head hack

* save intermediate

* save correct attention

* add copied from from bart

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* fix part of the reviewss
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* same changes in naming / conversion

* correct mask

* more fixes

* delete FlaxOPT and TfOPT

* clean traces of Flax and Tf

* fix mask

* fixed positionnal embedding length when past key value is provoded

* get 125m, 6.7b to work

* Added do_layer_norm

* solved mismatch in load dictionnary

* clean up preapre opt input dict

* fixed past key value as bool

* fix previus

* fixed return dict False tuple issue

* All tests are passing

* Make style

* Ignore OPTDecoder non tested

* make fix-copies

* make repo consistency

* small fix

* removed uselss @torch.no_grad decorator

* make styl;e

* fix previous opt test

* style

* make style

* added opt documentation

* update OPT_PRETRAINED_MODEL_ARCHIVE_LIST

* up

* more fixes

* model & config work

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* added comment on padding hack (+2)

* cleaup

* review update

* docstring for missing arg

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/opt/__init__.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* update pretrained map

* update path and tests

* make style

* styling

* make consistency

* add gpt2 tok new

* more tok fixes

* Update src/transformers/models/auto/tokenization_auto.py

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update docs/source/en/model_doc/opt.mdx

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update tests/models/opt/test_modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update src/transformers/models/opt/modeling_opt.py

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* Update based on reviews

* Apply suggestions from code review

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

* make style

* make tokenizer auto tests pass

* apply Lysandre suggestion

* finish tests

* add some good tokenizer tests

* improve docs slighly

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
Co-authored-by: ArthurZucker <arthur.zucker@gmail.com>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
2022-05-12 12:24:35 +02:00

363 lines
14 KiB
Python

# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch OPT model. """
import copy
import tempfile
import unittest
import timeout_decorator # noqa
from transformers import OPTConfig, is_torch_available, pipeline
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from transformers.utils import cached_property
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import GPT2Tokenizer, OPTForCausalLM, OPTModel
def prepare_opt_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
}
class OPTModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
word_embed_proj_dim=16,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_opt_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def get_config(self):
return OPTConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
def get_pipeline_config(self):
config = self.get_config()
config.max_position_embeddings = 100
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = OPTModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
head_mask = inputs_dict["head_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
@require_torch
class OPTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (OPTModel, OPTForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (OPTForCausalLM,) if is_torch_available() else ()
is_encoder_decoder = False
test_pruning = False
test_missing_keys = False
def setUp(self):
self.model_tester = OPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OPTConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (OPTModel,):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = OPTForCausalLM(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(input_ids, attention_mask=attention_mask)
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)
def assert_tensors_close(a, b, atol=1e-12, prefix=""):
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
if a is None and b is None:
return True
try:
if torch.allclose(a, b, atol=atol):
return True
raise
except Exception:
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
if a.numel() > 100:
msg = f"tensor values are {pct_different:.1%} percent different."
else:
msg = f"{a} != {b}"
if prefix:
msg = prefix + ": " + msg
raise AssertionError(msg)
def _long_tensor(tok_lst):
return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
@require_torch
@require_sentencepiece
@require_tokenizers
class OPTModelIntegrationTests(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
@slow
def test_inference_no_head(self):
model = OPTModel.from_pretrained("facebook/opt-350m").to(torch_device)
input_ids = _long_tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
attention_mask = input_ids.ne(model.config.pad_token_id)
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
expected_shape = torch.Size((1, 11, 1024))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[0.7144, 0.8143, -1.2813], [0.7144, 0.8143, -1.2813], [-0.0467, 2.5911, -2.1845]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
@require_tokenizers
@require_torch
@slow
class OPTEmbeddingsTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.path_model = "facebook/opt-350m"
def test_load_model(self):
try:
_ = OPTForCausalLM.from_pretrained(self.path_model)
except BaseException:
self.fail("Failed loading model")
def test_logits(self):
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
tokenizer = GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
tokenizer.add_special_tokens({"pad_token": "<pad>"})
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
input_ids = tokenizer(prompts, return_tensors="pt", padding=True).input_ids
logits = model(input_ids)[0].mean(dim=-1)
# logits_meta = torch.load(self.path_logits_meta)
logits_meta = torch.Tensor(
[
[1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670],
[-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822],
[0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703],
[6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477],
]
)
assert torch.allclose(logits, logits_meta, atol=1e-4)
@require_tokenizers
@slow
class OPTGenerationTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.all_model_path = ["facebook/opt-125m", "facebook/opt-350m"]
def test_generation(self):
prompts = [
"Today is a beautiful day and I want to",
"In the city of",
"Paris is the capital of France and",
"Computers and mobile phones have taken",
]
NEXT_TOKENS = [3392, 764, 5, 81]
GEN_OUTPUT = []
tokenizer = GPT2Tokenizer.from_pretrained("patrickvonplaten/opt_gpt2_tokenizer")
for model in self.all_model_path:
model = OPTForCausalLM.from_pretrained(self.path_model)
model = model.eval()
model.config.eos_token_id = tokenizer.eos_token_id
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, return_tensors=True)
for prompt in prompts:
len_input_sentence = len(tokenizer.tokenize(prompt))
predicted_next_token = gen(prompt)[0]["generated_token_ids"][len_input_sentence]
GEN_OUTPUT.append(predicted_next_token)
self.assertListEqual(GEN_OUTPUT, NEXT_TOKENS)