mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 10:41:07 +06:00
1016 lines
51 KiB
Python
1016 lines
51 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" TF 2.0 BERT model. """
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from io import open
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
|
|
from .configuration_bert import BertConfig
|
|
from .modeling_tf_utils import TFPreTrainedModel
|
|
from .file_utils import add_start_docstrings
|
|
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
|
|
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-tf_model.h5",
|
|
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-tf_model.h5",
|
|
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-tf_model.h5",
|
|
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-tf_model.h5",
|
|
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-tf_model.h5",
|
|
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-tf_model.h5",
|
|
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-tf_model.h5",
|
|
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-tf_model.h5",
|
|
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-tf_model.h5",
|
|
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-tf_model.h5",
|
|
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-tf_model.h5",
|
|
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-tf_model.h5",
|
|
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-tf_model.h5",
|
|
}
|
|
|
|
|
|
def load_bert_pt_weights_in_tf2(tf_model, pytorch_checkpoint_path):
|
|
# build the network
|
|
inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
|
|
tf_inputs = tf.constant(inputs_list)
|
|
tfo = tf_model(tf_inputs, training=False)
|
|
return load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=tf_inputs)
|
|
|
|
|
|
def gelu(x):
|
|
""" Gaussian Error Linear Unit.
|
|
Original Implementation of the gelu activation function in Google Bert repo when initialy created.
|
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
|
Also see https://arxiv.org/abs/1606.08415
|
|
"""
|
|
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.math.sqrt(2.0)))
|
|
return x * cdf
|
|
|
|
def gelu_new(x):
|
|
"""Gaussian Error Linear Unit.
|
|
This is a smoother version of the RELU.
|
|
Original paper: https://arxiv.org/abs/1606.08415
|
|
Args:
|
|
x: float Tensor to perform activation.
|
|
Returns:
|
|
`x` with the GELU activation applied.
|
|
"""
|
|
cdf = 0.5 * (1.0 + tf.tanh(
|
|
(np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
|
|
return x * cdf
|
|
|
|
def swish(x):
|
|
return x * tf.sigmoid(x)
|
|
|
|
|
|
ACT2FN = {"gelu": tf.keras.layers.Activation(gelu),
|
|
"relu": tf.keras.activations.relu,
|
|
"swish": tf.keras.layers.Activation(swish),
|
|
"gelu_new": tf.keras.layers.Activation(gelu_new)}
|
|
|
|
|
|
class TFBertEmbeddings(tf.keras.layers.Layer):
|
|
"""Construct the embeddings from word, position and token_type embeddings.
|
|
"""
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertEmbeddings, self).__init__(**kwargs)
|
|
self.vocab_size = config.vocab_size
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.position_embeddings = tf.keras.layers.Embedding(config.max_position_embeddings, config.hidden_size, name='position_embeddings')
|
|
self.token_type_embeddings = tf.keras.layers.Embedding(config.type_vocab_size, config.hidden_size, name='token_type_embeddings')
|
|
|
|
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
|
# any TensorFlow checkpoint file
|
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
|
|
def build(self, input_shape):
|
|
"""Build shared word embedding layer """
|
|
with tf.name_scope("word_embeddings"):
|
|
# Create and initialize weights. The random normal initializer was chosen
|
|
# arbitrarily, and works well.
|
|
self.word_embeddings = self.add_weight(
|
|
"weight",
|
|
shape=[self.vocab_size, self.hidden_size],
|
|
initializer=tf.random_normal_initializer(
|
|
mean=0., stddev=self.hidden_size**-0.5))
|
|
super(TFBertEmbeddings, self).build(input_shape)
|
|
|
|
def call(self, inputs, mode="embedding", training=False):
|
|
"""Get token embeddings of inputs.
|
|
Args:
|
|
inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
|
|
mode: string, a valid value is one of "embedding" and "linear".
|
|
Returns:
|
|
outputs: (1) If mode == "embedding", output embedding tensor, float32 with
|
|
shape [batch_size, length, embedding_size]; (2) mode == "linear", output
|
|
linear tensor, float32 with shape [batch_size, length, vocab_size].
|
|
Raises:
|
|
ValueError: if mode is not valid.
|
|
|
|
Shared weights logic adapted from
|
|
https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
|
|
"""
|
|
if mode == "embedding":
|
|
return self._embedding(inputs, training=training)
|
|
elif mode == "linear":
|
|
return self._linear(inputs)
|
|
else:
|
|
raise ValueError("mode {} is not valid.".format(mode))
|
|
|
|
def _embedding(self, inputs, training=False):
|
|
"""Applies embedding based on inputs tensor."""
|
|
input_ids, position_ids, token_type_ids = inputs
|
|
|
|
seq_length = tf.shape(input_ids)[1]
|
|
if position_ids is None:
|
|
position_ids = tf.range(seq_length, dtype=tf.int32)[tf.newaxis, :]
|
|
if token_type_ids is None:
|
|
token_type_ids = tf.fill(tf.shape(input_ids), 0)
|
|
|
|
words_embeddings = tf.gather(self.word_embeddings, input_ids)
|
|
position_embeddings = self.position_embeddings(position_ids)
|
|
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
|
|
|
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
|
embeddings = self.LayerNorm(embeddings)
|
|
embeddings = self.dropout(embeddings, training=training)
|
|
return embeddings
|
|
|
|
def _linear(self, inputs):
|
|
"""Computes logits by running inputs through a linear layer.
|
|
Args:
|
|
inputs: A float32 tensor with shape [batch_size, length, hidden_size]
|
|
Returns:
|
|
float32 tensor with shape [batch_size, length, vocab_size].
|
|
"""
|
|
batch_size = tf.shape(inputs)[0]
|
|
length = tf.shape(inputs)[1]
|
|
|
|
x = tf.reshape(inputs, [-1, self.hidden_size])
|
|
logits = tf.matmul(x, self.word_embeddings, transpose_b=True)
|
|
|
|
return tf.reshape(logits, [batch_size, length, self.vocab_size])
|
|
|
|
|
|
class TFBertSelfAttention(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertSelfAttention, self).__init__(**kwargs)
|
|
if config.hidden_size % config.num_attention_heads != 0:
|
|
raise ValueError(
|
|
"The hidden size (%d) is not a multiple of the number of attention "
|
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
|
self.output_attentions = config.output_attentions
|
|
|
|
self.num_attention_heads = config.num_attention_heads
|
|
assert config.hidden_size % config.num_attention_heads == 0
|
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = tf.keras.layers.Dense(self.all_head_size, name='query')
|
|
self.key = tf.keras.layers.Dense(self.all_head_size, name='key')
|
|
self.value = tf.keras.layers.Dense(self.all_head_size, name='value')
|
|
|
|
self.dropout = tf.keras.layers.Dropout(config.attention_probs_dropout_prob)
|
|
|
|
def transpose_for_scores(self, x, batch_size):
|
|
x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size))
|
|
return tf.transpose(x, perm=[0, 2, 1, 3])
|
|
|
|
def call(self, inputs, training=False):
|
|
hidden_states, attention_mask, head_mask = inputs
|
|
|
|
batch_size = tf.shape(hidden_states)[0]
|
|
mixed_query_layer = self.query(hidden_states)
|
|
mixed_key_layer = self.key(hidden_states)
|
|
mixed_value_layer = self.value(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
|
|
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
|
|
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
|
|
|
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) # (batch size, num_heads, seq_len_q, seq_len_k)
|
|
dk = tf.cast(tf.shape(key_layer)[-1], tf.float32) # scale attention_scores
|
|
attention_scores = attention_scores / tf.math.sqrt(dk)
|
|
|
|
if attention_mask is not None:
|
|
# Apply the attention mask is (precomputed for all layers in TFBertModel call() function)
|
|
attention_scores = attention_scores + attention_mask
|
|
|
|
# Normalize the attention scores to probabilities.
|
|
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
|
|
|
|
# This is actually dropping out entire tokens to attend to, which might
|
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
|
attention_probs = self.dropout(attention_probs, training=training)
|
|
|
|
# Mask heads if we want to
|
|
if head_mask is not None:
|
|
attention_probs = attention_probs * head_mask
|
|
|
|
context_layer = tf.matmul(attention_probs, value_layer)
|
|
|
|
context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3])
|
|
context_layer = tf.reshape(context_layer,
|
|
(batch_size, -1, self.all_head_size)) # (batch_size, seq_len_q, all_head_size)
|
|
|
|
outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
|
|
return outputs
|
|
|
|
|
|
class TFBertSelfOutput(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertSelfOutput, self).__init__(**kwargs)
|
|
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
|
|
def call(self, inputs, training=False):
|
|
hidden_states, input_tensor = inputs
|
|
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class TFBertAttention(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertAttention, self).__init__(**kwargs)
|
|
self.self_attention = TFBertSelfAttention(config, name='self')
|
|
self.dense_output = TFBertSelfOutput(config, name='output')
|
|
|
|
def prune_heads(self, heads):
|
|
raise NotImplementedError
|
|
|
|
def call(self, inputs, training=False):
|
|
input_tensor, attention_mask, head_mask = inputs
|
|
|
|
self_outputs = self.self_attention([input_tensor, attention_mask, head_mask], training=training)
|
|
attention_output = self.dense_output([self_outputs[0], input_tensor], training=training)
|
|
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class TFBertIntermediate(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertIntermediate, self).__init__(**kwargs)
|
|
self.dense = tf.keras.layers.Dense(config.intermediate_size, name='dense')
|
|
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.intermediate_act_fn = config.hidden_act
|
|
|
|
def call(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class TFBertOutput(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertOutput, self).__init__(**kwargs)
|
|
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
|
|
def call(self, inputs, training=False):
|
|
hidden_states, input_tensor = inputs
|
|
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.dropout(hidden_states, training=training)
|
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
|
return hidden_states
|
|
|
|
|
|
class TFBertLayer(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertLayer, self).__init__(**kwargs)
|
|
self.attention = TFBertAttention(config, name='attention')
|
|
self.intermediate = TFBertIntermediate(config, name='intermediate')
|
|
self.bert_output = TFBertOutput(config, name='output')
|
|
|
|
def call(self, inputs, training=False):
|
|
hidden_states, attention_mask, head_mask = inputs
|
|
|
|
attention_outputs = self.attention([hidden_states, attention_mask, head_mask], training=training)
|
|
attention_output = attention_outputs[0]
|
|
intermediate_output = self.intermediate(attention_output)
|
|
layer_output = self.bert_output([intermediate_output, attention_output], training=training)
|
|
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
|
|
return outputs
|
|
|
|
|
|
class TFBertEncoder(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertEncoder, self).__init__(**kwargs)
|
|
self.output_attentions = config.output_attentions
|
|
self.output_hidden_states = config.output_hidden_states
|
|
self.layer = [TFBertLayer(config, name='layer_._{}'.format(i)) for i in range(config.num_hidden_layers)]
|
|
|
|
def call(self, inputs, training=False):
|
|
hidden_states, attention_mask, head_mask = inputs
|
|
|
|
all_hidden_states = ()
|
|
all_attentions = ()
|
|
for i, layer_module in enumerate(self.layer):
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
layer_outputs = layer_module([hidden_states, attention_mask, head_mask[i]], training=training)
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if self.output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
# Add last layer
|
|
if self.output_hidden_states:
|
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
outputs = (hidden_states,)
|
|
if self.output_hidden_states:
|
|
outputs = outputs + (all_hidden_states,)
|
|
if self.output_attentions:
|
|
outputs = outputs + (all_attentions,)
|
|
return outputs # outputs, (hidden states), (attentions)
|
|
|
|
|
|
class TFBertPooler(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertPooler, self).__init__(**kwargs)
|
|
self.dense = tf.keras.layers.Dense(config.hidden_size, activation='tanh', name='dense')
|
|
|
|
def call(self, hidden_states):
|
|
# We "pool" the model by simply taking the hidden state corresponding
|
|
# to the first token.
|
|
first_token_tensor = hidden_states[:, 0]
|
|
pooled_output = self.dense(first_token_tensor)
|
|
return pooled_output
|
|
|
|
|
|
class TFBertPredictionHeadTransform(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertPredictionHeadTransform, self).__init__(**kwargs)
|
|
self.dense = tf.keras.layers.Dense(config.hidden_size, name='dense')
|
|
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
|
else:
|
|
self.transform_act_fn = config.hidden_act
|
|
self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name='LayerNorm')
|
|
|
|
def call(self, hidden_states):
|
|
hidden_states = self.dense(hidden_states)
|
|
hidden_states = self.transform_act_fn(hidden_states)
|
|
hidden_states = self.LayerNorm(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class TFBertLMPredictionHead(tf.keras.layers.Layer):
|
|
def __init__(self, config, input_embeddings, **kwargs):
|
|
super(TFBertLMPredictionHead, self).__init__(**kwargs)
|
|
self.vocab_size = config.vocab_size
|
|
self.transform = TFBertPredictionHeadTransform(config, name='transform')
|
|
|
|
# The output weights are the same as the input embeddings, but there is
|
|
# an output-only bias for each token.
|
|
self.input_embeddings = input_embeddings
|
|
|
|
def build(self, input_shape):
|
|
self.bias = self.add_weight(shape=(self.vocab_size,),
|
|
initializer='zeros',
|
|
trainable=True,
|
|
name='bias')
|
|
super(TFBertLMPredictionHead, self).build(input_shape)
|
|
|
|
def call(self, hidden_states):
|
|
hidden_states = self.transform(hidden_states)
|
|
hidden_states = self.input_embeddings(hidden_states, mode="linear")
|
|
hidden_states = hidden_states + self.bias
|
|
return hidden_states
|
|
|
|
|
|
class TFBertMLMHead(tf.keras.layers.Layer):
|
|
def __init__(self, config, input_embeddings, **kwargs):
|
|
super(TFBertMLMHead, self).__init__(**kwargs)
|
|
self.predictions = TFBertLMPredictionHead(config, input_embeddings, name='predictions')
|
|
|
|
def call(self, sequence_output):
|
|
prediction_scores = self.predictions(sequence_output)
|
|
return prediction_scores
|
|
|
|
|
|
class TFBertNSPHead(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertNSPHead, self).__init__(**kwargs)
|
|
self.seq_relationship = tf.keras.layers.Dense(2, name='seq_relationship')
|
|
|
|
def call(self, pooled_output):
|
|
seq_relationship_score = self.seq_relationship(pooled_output)
|
|
return seq_relationship_score
|
|
|
|
|
|
class TFBertMainLayer(tf.keras.layers.Layer):
|
|
def __init__(self, config, **kwargs):
|
|
super(TFBertMainLayer, self).__init__(**kwargs)
|
|
self.num_hidden_layers = config.num_hidden_layers
|
|
|
|
self.embeddings = TFBertEmbeddings(config, name='embeddings')
|
|
self.encoder = TFBertEncoder(config, name='encoder')
|
|
self.pooler = TFBertPooler(config, name='pooler')
|
|
|
|
def _resize_token_embeddings(self, new_num_tokens):
|
|
raise NotImplementedError
|
|
|
|
def _prune_heads(self, heads_to_prune):
|
|
""" Prunes heads of the model.
|
|
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
|
See base class PreTrainedModel
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
# def call(self, input_ids, attention_mask=None, token_type_ids=None,
|
|
# position_ids=None, head_mask=None, training=False):
|
|
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
|
|
if isinstance(inputs, (tuple, list)):
|
|
input_ids = inputs[0]
|
|
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
|
|
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
|
|
position_ids = inputs[3] if len(inputs) > 3 else position_ids
|
|
head_mask = inputs[4] if len(inputs) > 4 else head_mask
|
|
assert len(inputs) <= 5, "Too many inputs."
|
|
elif isinstance(inputs, dict):
|
|
input_ids = inputs.get('input_ids')
|
|
attention_mask = inputs.get('attention_mask', attention_mask)
|
|
token_type_ids = inputs.get('token_type_ids', token_type_ids)
|
|
position_ids = inputs.get('position_ids', position_ids)
|
|
head_mask = inputs.get('head_mask', head_mask)
|
|
assert len(inputs) <= 5, "Too many inputs."
|
|
else:
|
|
input_ids = inputs
|
|
|
|
if attention_mask is None:
|
|
attention_mask = tf.fill(tf.shape(input_ids), 1)
|
|
if token_type_ids is None:
|
|
token_type_ids = tf.fill(tf.shape(input_ids), 0)
|
|
|
|
# We create a 3D attention mask from a 2D tensor mask.
|
|
# Sizes are [batch_size, 1, 1, to_seq_length]
|
|
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
|
# this attention mask is more simple than the triangular masking of causal attention
|
|
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
|
extended_attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]
|
|
|
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
|
# masked positions, this operation will create a tensor which is 0.0 for
|
|
# positions we want to attend and -10000.0 for masked positions.
|
|
# Since we are adding it to the raw scores before the softmax, this is
|
|
# effectively the same as removing these entirely.
|
|
|
|
extended_attention_mask = tf.cast(extended_attention_mask, tf.float32)
|
|
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
|
|
|
# Prepare head mask if needed
|
|
# 1.0 in head_mask indicate we keep the head
|
|
# attention_probs has shape bsz x n_heads x N x N
|
|
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
|
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
|
if not head_mask is None:
|
|
raise NotImplementedError
|
|
else:
|
|
head_mask = [None] * self.num_hidden_layers
|
|
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
|
|
|
embedding_output = self.embeddings([input_ids, position_ids, token_type_ids], training=training)
|
|
encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training)
|
|
|
|
sequence_output = encoder_outputs[0]
|
|
pooled_output = self.pooler(sequence_output)
|
|
|
|
outputs = (sequence_output, pooled_output,) + encoder_outputs[1:] # add hidden_states and attentions if they are here
|
|
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
|
|
|
|
|
|
class TFBertPreTrainedModel(TFPreTrainedModel):
|
|
""" An abstract class to handle weights initialization and
|
|
a simple interface for dowloading and loading pretrained models.
|
|
"""
|
|
config_class = BertConfig
|
|
pretrained_model_archive_map = TF_BERT_PRETRAINED_MODEL_ARCHIVE_MAP
|
|
load_pt_weights = load_bert_pt_weights_in_tf2
|
|
base_model_prefix = "bert"
|
|
|
|
|
|
BERT_START_DOCSTRING = r""" The BERT model was proposed in
|
|
`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_
|
|
by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It's a bidirectional transformer
|
|
pre-trained using a combination of masked language modeling objective and next sentence prediction
|
|
on a large corpus comprising the Toronto Book Corpus and Wikipedia.
|
|
|
|
This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
|
|
refer to the TF 2.0 documentation for all matter related to general usage and behavior.
|
|
|
|
.. _`BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`:
|
|
https://arxiv.org/abs/1810.04805
|
|
|
|
.. _`tf.keras.Model`:
|
|
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model
|
|
|
|
Note on the model inputs:
|
|
TF 2.0 models accepts two formats as inputs:
|
|
|
|
- having all inputs as keyword arguments (like PyTorch models), or
|
|
- having all inputs as a list, tuple or dict in the first positional arguments.
|
|
|
|
This second option is usefull when using `tf.keras.Model.fit()` method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`.
|
|
|
|
If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :
|
|
|
|
- a single Tensor with input_ids only and nothing else: `model(inputs_ids)
|
|
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
|
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
|
- a dictionary with one or several input Tensors associaed to the input names given in the docstring:
|
|
`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
|
|
|
|
Parameters:
|
|
config (:class:`~pytorch_transformers.BertConfig`): Model configuration class with all the parameters of the model.
|
|
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
|
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
|
"""
|
|
|
|
BERT_INPUTS_DOCSTRING = r"""
|
|
Inputs:
|
|
**input_ids**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of input sequence tokens in the vocabulary.
|
|
To match pre-training, BERT input sequence should be formatted with [CLS] and [SEP] tokens as follows:
|
|
|
|
(a) For sequence pairs:
|
|
|
|
``tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]``
|
|
|
|
``token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1``
|
|
|
|
(b) For single sequences:
|
|
|
|
``tokens: [CLS] the dog is hairy . [SEP]``
|
|
|
|
``token_type_ids: 0 0 0 0 0 0 0``
|
|
|
|
Bert is a model with absolute position embeddings so it's usually advised to pad the inputs on
|
|
the right rather than the left.
|
|
|
|
Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
|
|
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
|
|
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
|
**attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
|
Mask to avoid performing attention on padding token indices.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
|
**token_type_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
|
Segment token indices to indicate first and second portions of the inputs.
|
|
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
|
|
corresponds to a `sentence B` token
|
|
(see `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding`_ for more details).
|
|
**position_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
|
Indices of positions of each input sequence tokens in the position embeddings.
|
|
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
|
**head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
|
Mask to nullify selected heads of the self-attention modules.
|
|
Mask values selected in ``[0, 1]``:
|
|
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
|
"""
|
|
|
|
@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertModel(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
|
Sequence of hidden-states at the output of the last layer of the model.
|
|
**pooler_output**: ``tf.Tensor`` of shape ``(batch_size, hidden_size)``
|
|
Last layer hidden-state of the first token of the sequence (classification token)
|
|
further processed by a Linear layer and a Tanh activation function. The Linear
|
|
layer weights are trained from the next sentence prediction (classification)
|
|
objective during Bert pretraining. This output is usually *not* a good summary
|
|
of the semantic content of the input, you're often better with averaging or pooling
|
|
the sequence of hidden-states for the whole input sequence.
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertModel
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertModel.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertModel, self).__init__(config, *inputs, **kwargs)
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
return outputs
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with two heads on top as done during the pre-training:
|
|
a `masked language modeling` head and a `next sentence prediction (classification)` head. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForPreTraining(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**prediction_scores**: ```tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**seq_relationship_scores**: ```tf.Tensor`` of shape ``(batch_size, sequence_length, 2)``
|
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ```tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ```tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForPreTraining
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForPreTraining.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
prediction_scores, seq_relationship_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForPreTraining, self).__init__(config, *inputs, **kwargs)
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.nsp = TFBertNSPHead(config, name='nsp___cls')
|
|
self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
sequence_output, pooled_output = outputs[:2]
|
|
prediction_scores = self.mlm(sequence_output, training=kwargs.get('training', False))
|
|
seq_relationship_score = self.nsp(pooled_output)
|
|
|
|
outputs = (prediction_scores, seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
|
|
|
|
return outputs # prediction_scores, seq_relationship_score, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForMaskedLM(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**prediction_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForMaskedLM
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForMaskedLM.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
prediction_scores = outputs[0]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForMaskedLM, self).__init__(config, *inputs, **kwargs)
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.mlm = TFBertMLMHead(config, self.bert.embeddings, name='mlm___cls')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
sequence_output = outputs[0]
|
|
prediction_scores = self.mlm(sequence_output, training=kwargs.get('training', False))
|
|
|
|
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
|
|
|
|
return outputs # prediction_scores, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with a `next sentence prediction (classification)` head on top. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForNextSentencePrediction(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**seq_relationship_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, 2)``
|
|
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForNextSentencePrediction
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForNextSentencePrediction.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
seq_relationship_scores = outputs[0]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForNextSentencePrediction, self).__init__(config, *inputs, **kwargs)
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.nsp = TFBertNSPHead(config, name='nsp___cls')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
pooled_output = outputs[1]
|
|
seq_relationship_score = self.nsp(pooled_output)
|
|
|
|
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
|
|
|
|
return outputs # seq_relationship_score, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
|
|
the pooled output) e.g. for GLUE tasks. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForSequenceClassification(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**logits**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, config.num_labels)``
|
|
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForSequenceClassification
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
logits = outputs[0]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForSequenceClassification, self).__init__(config, *inputs, **kwargs)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = tf.keras.layers.Dense(config.num_labels, name='classifier')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
pooled_output = outputs[1]
|
|
|
|
pooled_output = self.dropout(pooled_output, training=kwargs.get('training', False))
|
|
logits = self.classifier(pooled_output)
|
|
|
|
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
|
|
|
return outputs # logits, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with a multiple choice classification head on top (a linear layer on top of
|
|
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForMultipleChoice(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**classification_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
|
|
of the input tensors. (see `input_ids` above).
|
|
Classification scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForMultipleChoice
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForMultipleChoice.from_pretrained('bert-base-uncased')
|
|
choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
|
|
input_ids = tf.constant([tokenizer.encode(s) for s in choices])[None, :] # Batch size 1, 2 choices
|
|
outputs = model(input_ids)
|
|
classification_scores = outputs[0]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForMultipleChoice, self).__init__(config, *inputs, **kwargs)
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = tf.keras.layers.Dense(1, name='classifier')
|
|
|
|
def call(self, inputs, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, training=False):
|
|
if isinstance(inputs, (tuple, list)):
|
|
input_ids = inputs[0]
|
|
attention_mask = inputs[1] if len(inputs) > 1 else attention_mask
|
|
token_type_ids = inputs[2] if len(inputs) > 2 else token_type_ids
|
|
position_ids = inputs[3] if len(inputs) > 3 else position_ids
|
|
head_mask = inputs[4] if len(inputs) > 4 else head_mask
|
|
assert len(inputs) <= 5, "Too many inputs."
|
|
elif isinstance(inputs, dict):
|
|
input_ids = inputs.get('input_ids')
|
|
attention_mask = inputs.get('attention_mask', attention_mask)
|
|
token_type_ids = inputs.get('token_type_ids', token_type_ids)
|
|
position_ids = inputs.get('position_ids', position_ids)
|
|
head_mask = inputs.get('head_mask', head_mask)
|
|
assert len(inputs) <= 5, "Too many inputs."
|
|
else:
|
|
input_ids = inputs
|
|
|
|
num_choices = tf.shape(input_ids)[1]
|
|
seq_length = tf.shape(input_ids)[2]
|
|
|
|
flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
|
|
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
|
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
|
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
|
|
|
flat_inputs = [flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]
|
|
|
|
outputs = self.bert(flat_inputs, training=training)
|
|
|
|
pooled_output = outputs[1]
|
|
|
|
pooled_output = self.dropout(pooled_output, training=training)
|
|
logits = self.classifier(pooled_output)
|
|
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
|
|
|
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
|
|
|
|
return outputs # reshaped_logits, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with a token classification head on top (a linear layer on top of
|
|
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForTokenClassification(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, config.num_labels)``
|
|
Classification scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForTokenClassification
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForTokenClassification.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
outputs = model(input_ids)
|
|
scores = outputs[0]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForTokenClassification, self).__init__(config, *inputs, **kwargs)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob)
|
|
self.classifier = tf.keras.layers.Dense(config.num_labels, name='classifier')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
sequence_output = self.dropout(sequence_output, training=kwargs.get('training', False))
|
|
logits = self.classifier(sequence_output)
|
|
|
|
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
|
|
|
|
return outputs # scores, (hidden_states), (attentions)
|
|
|
|
|
|
@add_start_docstrings("""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
|
|
the hidden-states output to compute `span start logits` and `span end logits`). """,
|
|
BERT_START_DOCSTRING, BERT_INPUTS_DOCSTRING)
|
|
class TFBertForQuestionAnswering(TFBertPreTrainedModel):
|
|
r"""
|
|
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
|
**start_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-start scores (before SoftMax).
|
|
**end_scores**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length,)``
|
|
Span-end scores (before SoftMax).
|
|
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
|
of shape ``(batch_size, sequence_length, hidden_size)``:
|
|
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
|
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
|
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
|
|
|
Examples::
|
|
|
|
import tensorflow as tf
|
|
from pytorch_transformers import BertTokenizer, TFBertForQuestionAnswering
|
|
|
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
model = TFBertForQuestionAnswering.from_pretrained('bert-base-uncased')
|
|
input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute"))[None, :] # Batch size 1
|
|
start_positions = tf.constant([1])
|
|
end_positions = tf.constant([3])
|
|
outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
|
start_scores, end_scores = outputs[:2]
|
|
|
|
"""
|
|
def __init__(self, config, *inputs, **kwargs):
|
|
super(TFBertForQuestionAnswering, self).__init__(config, *inputs, **kwargs)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.bert = TFBertMainLayer(config, name='bert')
|
|
self.qa_outputs = tf.keras.layers.Dense(config.num_labels, name='qa_outputs')
|
|
|
|
def call(self, inputs, **kwargs):
|
|
outputs = self.bert(inputs, **kwargs)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
|
start_logits = tf.squeeze(start_logits, axis=-1)
|
|
end_logits = tf.squeeze(end_logits, axis=-1)
|
|
|
|
outputs = (start_logits, end_logits,) + outputs[2:]
|
|
|
|
return outputs # start_logits, end_logits, (hidden_states), (attentions)
|