mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* use torch.testing.assertclose instead to get more details about error in cis * fix * style * test_all * revert for I bert * fixes and updates * more image processing fixes * more image processors * fix mamba and co * style * less strick * ok I won't be strict * skip and be done * up
358 lines
14 KiB
Python
358 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
from transformers import ImageGPTConfig
|
|
from transformers.testing_utils import require_torch, require_vision, run_test_using_subprocess, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
ImageGPTForCausalImageModeling,
|
|
ImageGPTForImageClassification,
|
|
ImageGPTModel,
|
|
)
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ImageGPTImageProcessor
|
|
|
|
|
|
class ImageGPTModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=14,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_token_type_ids=True,
|
|
use_input_mask=True,
|
|
use_labels=True,
|
|
use_mc_token_ids=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_input_mask = use_input_mask
|
|
self.use_labels = use_labels
|
|
self.use_mc_token_ids = use_mc_token_ids
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = None
|
|
|
|
def get_large_model_config(self):
|
|
return ImageGPTConfig.from_pretrained("imagegpt")
|
|
|
|
def prepare_config_and_inputs(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
mc_token_ids = None
|
|
if self.use_mc_token_ids:
|
|
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config(
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
|
|
reorder_and_upcast_attn=reorder_and_upcast_attn,
|
|
)
|
|
|
|
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def get_config(
|
|
self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
|
|
):
|
|
return ImageGPTConfig(
|
|
vocab_size=self.vocab_size,
|
|
n_embd=self.hidden_size,
|
|
n_layer=self.num_hidden_layers,
|
|
n_head=self.num_attention_heads,
|
|
n_inner=self.intermediate_size,
|
|
activation_function=self.hidden_act,
|
|
resid_pdrop=self.hidden_dropout_prob,
|
|
attn_pdrop=self.attention_probs_dropout_prob,
|
|
n_positions=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
use_cache=True,
|
|
gradient_checkpointing=gradient_checkpointing,
|
|
scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
|
|
reorder_and_upcast_attn=reorder_and_upcast_attn,
|
|
)
|
|
|
|
def get_pipeline_config(self):
|
|
config = self.get_config()
|
|
config.vocab_size = 513
|
|
config.max_position_embeddings = 1024
|
|
return config
|
|
|
|
def create_and_check_imagegpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = ImageGPTModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
|
|
result = model(input_ids, token_type_ids=token_type_ids)
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(len(result.past_key_values), config.n_layer)
|
|
|
|
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
|
|
model = ImageGPTForCausalImageModeling(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
|
|
result = model(input_ids, token_type_ids=token_type_ids, labels=labels)
|
|
self.parent.assertEqual(result.loss.shape, ())
|
|
# ImageGPTForCausalImageModeling doens't have tied input- and output embeddings
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size - 1))
|
|
|
|
def create_and_check_imagegpt_for_image_classification(
|
|
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = ImageGPTForImageClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
head_mask,
|
|
token_type_ids,
|
|
mc_token_ids,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"token_type_ids": token_type_ids,
|
|
"head_mask": head_mask,
|
|
}
|
|
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class ImageGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel) if is_torch_available() else ()
|
|
)
|
|
all_generative_model_classes = (ImageGPTForCausalImageModeling,) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"image-feature-extraction": ImageGPTModel, "image-classification": ImageGPTForImageClassification}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
test_missing_keys = False
|
|
|
|
# as ImageGPTForImageClassification isn't included in any auto mapping, we add labels here
|
|
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
|
|
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
|
|
|
|
if return_labels:
|
|
if model_class.__name__ == "ImageGPTForImageClassification":
|
|
inputs_dict["labels"] = torch.zeros(
|
|
self.model_tester.batch_size, dtype=torch.long, device=torch_device
|
|
)
|
|
|
|
return inputs_dict
|
|
|
|
# we overwrite the _check_scores method of GenerationTesterMixin, as ImageGPTForCausalImageModeling doesn't have tied input- and output embeddings
|
|
def _check_scores(self, batch_size, scores, length, config):
|
|
expected_shape = (batch_size, config.vocab_size - 1)
|
|
self.assertIsInstance(scores, tuple)
|
|
self.assertEqual(len(scores), length)
|
|
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))
|
|
|
|
@run_test_using_subprocess
|
|
def test_beam_search_generate_dict_outputs_use_cache(self):
|
|
super().test_beam_search_generate_dict_outputs_use_cache()
|
|
|
|
def setUp(self):
|
|
self.model_tester = ImageGPTModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=ImageGPTConfig, n_embd=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_imagegpt_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_imagegpt_model(*config_and_inputs)
|
|
|
|
def test_imagegpt_causal_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
|
|
|
|
def test_imagegpt_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_imagegpt_for_image_classification(*config_and_inputs)
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "openai/imagegpt-small"
|
|
model = ImageGPTModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["input_ids"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
@unittest.skip(reason="The model doesn't support left padding") # and it's not used enough to be worth fixing :)
|
|
def test_left_padding_compatibility(self):
|
|
pass
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class ImageGPTModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small") if is_vision_available() else None
|
|
|
|
@slow
|
|
def test_inference_causal_lm_head(self):
|
|
model = ImageGPTForCausalImageModeling.from_pretrained("openai/imagegpt-small").to(torch_device)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 1024, 512))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[2.3445, 2.6889, 2.7313], [1.0530, 1.2416, 0.5699], [0.2205, 0.7749, 0.3953]]
|
|
).to(torch_device)
|
|
|
|
torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
|