transformers/tests/test_pipelines_token_classification.py
Nicolas Patry b88e0e016d
[TokenClassification] Label realignment for subword aggregation (#11680)
* [TokenClassification] Label realignment for subword aggregation

Tentative to replace https://github.com/huggingface/transformers/pull/11622/files

- Added `AggregationStrategy`
- `ignore_subwords` and `grouped_entities` arguments are now fused
  into `aggregation_strategy`. It makes more sense anyway because
  `ignore_subwords=True` with `grouped_entities=False` did not have a
  meaning anyway.
- Added 2 new ways to aggregate which are MAX, and AVERAGE
- AVERAGE requires a bit more information than the others, for now this
case is slightly specific, we should keep that in mind for future
changes.
- Testing has been modified to reflect new argument, and to check the
correct deprecation and the new aggregation_strategy.
- Put the testing argument and testing results for aggregation_strategy,
close together, so that readers can understand what is supposed to
happen.
- `aggregate` is now only tested on a small model as it does not mean
anything to test it globally for all models.
- Previous tests are unchanged in desired output.
- Added a new test case that showcases better the difference between the
  FIRST, MAX and AVERAGE strategies.

* Wrong framework.

* Addressing three issues.

1- Tags might not follow B-, I- convention, so any tag should work now
(assumed as B-TAG)
2- Fixed an issue with average that leads to a substantial code change.
3- The testing suite was not checking for the "index" key for "none"
strategy. This is now fixed.

The issue is that "O" could not be chosen by AVERAGE strategy because
those tokens were filtered out beforehand, so their relative scores were
not counted in the average. Now filtering on
ignore_labels will happen at the very end of the pipeline fixing
that issue.
It's a bit hard to make sure this stays like that because we do
not have a end-to-end test for that behavior

* Formatting.

* Adding formatting to code + cleaner handling of B-, I- tags.

Co-authored-by: Francesco Rubbo <rubbo.francesco@gmail.com>
Co-authored-by: elk-cloner <rezakakhki.rk@gmail.com>

* Typo.

Co-authored-by: Francesco Rubbo <rubbo.francesco@gmail.com>
Co-authored-by: elk-cloner <rezakakhki.rk@gmail.com>
2021-05-18 09:53:20 +02:00

550 lines
23 KiB
Python

# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
from transformers.pipelines import AggregationStrategy, Pipeline, TokenClassificationArgumentHandler
from transformers.testing_utils import nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import CustomInputPipelineCommonMixin
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
class TokenClassificationPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
pipeline_task = "ner"
small_models = [
"sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
] # Default model - Models tested without the @slow decorator
large_models = [] # Models tested with the @slow decorator
def _test_pipeline(self, nlp: Pipeline):
output_keys = {"entity", "word", "score", "start", "end", "index"}
if nlp.aggregation_strategy != AggregationStrategy.NONE:
output_keys = {"entity_group", "word", "score", "start", "end"}
self.assertIsNotNone(nlp)
mono_result = nlp(VALID_INPUTS[0])
self.assertIsInstance(mono_result, list)
self.assertIsInstance(mono_result[0], (dict, list))
if isinstance(mono_result[0], list):
mono_result = mono_result[0]
for key in output_keys:
self.assertIn(key, mono_result[0])
multi_result = [nlp(input) for input in VALID_INPUTS]
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], (dict, list))
if isinstance(multi_result[0], list):
multi_result = multi_result[0]
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
@require_torch
@slow
def test_spanish_bert(self):
# https://github.com/huggingface/transformers/pull/4987
NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
{"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
{"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
{"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23},
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75},
{"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
],
)
@require_torch
@slow
def test_dbmdz_english(self):
# Other sentence
NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
sentence = """Enzo works at the the UN"""
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity": "I-PER", "score": 0.997, "word": "En", "start": 0, "end": 2, "index": 1},
{"entity": "I-PER", "score": 0.996, "word": "##zo", "start": 2, "end": 4, "index": 2},
{"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24, "index": 7},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output[:3]),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
],
)
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
output = token_classifier(sentence)
self.assertEqual(
nested_simplify(output),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 22, "end": 24},
],
)
@require_torch
def test_aggregation_strategy(self):
model_name = self.small_models[0]
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
# Just to understand scores indexes in this test
self.assertEqual(
token_classifier.model.config.id2label,
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
)
example = [
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),
"index": 1,
"is_subword": False,
"word": "En",
"start": 0,
"end": 2,
},
{
# fmt : off
"scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),
"index": 2,
"is_subword": True,
"word": "##zo",
"start": 2,
"end": 4,
},
{
# fmt: off
"scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]),
# fmt: on
"index": 7,
"word": "UN",
"is_subword": False,
"start": 11,
"end": 13,
},
]
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
[
{"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
{"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
{"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
[
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
[
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
],
)
@require_torch
def test_aggregation_strategy_example2(self):
model_name = self.small_models[0]
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
# Just to understand scores indexes in this test
self.assertEqual(
token_classifier.model.config.id2label,
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
)
example = [
{
# Necessary for AVERAGE
"scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
"is_subword": False,
"index": 1,
"word": "Ra",
"start": 0,
"end": 2,
},
{
"scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
"is_subword": True,
"word": "##ma",
"start": 2,
"end": 4,
"index": 2,
},
{
# 4th score will have the higher average
# 4th score is B-PER for this model
# It's does not correspond to any of the subtokens.
"scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
"is_subword": True,
"word": "##zotti",
"start": 11,
"end": 13,
"index": 3,
},
]
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.NONE),
[
{"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
{"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
{"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
],
)
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.FIRST),
[{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
)
self.assertEqual(
token_classifier.aggregate(example, AggregationStrategy.MAX),
[{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
)
self.assertEqual(
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
[{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
)
@require_torch
def test_gather_pre_entities(self):
model_name = self.small_models[0]
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
sentence = "Hello there"
tokens = tokenizer(
sentence,
return_attention_mask=False,
return_tensors="pt",
truncation=True,
return_special_tokens_mask=True,
return_offsets_mapping=True,
)
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
input_ids = tokens["input_ids"].numpy()[0]
# First element in [CLS]
scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])
pre_entities = nlp.gather_pre_entities(sentence, input_ids, scores, offset_mapping, special_tokens_mask)
self.assertEqual(
nested_simplify(pre_entities),
[
{"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
{
"word": "there",
"scores": [0.8, 0.1, 0.1],
"index": 2,
"start": 6,
"end": 11,
"is_subword": False,
},
],
)
@require_tf
def test_tf_only(self):
model_name = "Narsil/small" # This model only has a TensorFlow version
# We test that if we don't specificy framework='tf', it gets detected automatically
nlp = pipeline(task="ner", model=model_name)
self._test_pipeline(nlp)
@require_tf
def test_tf_defaults(self):
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="tf")
self._test_pipeline(nlp)
@require_tf
def test_tf_small_ignore_subwords_available_for_fast_tokenizers(self):
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(
task="ner",
model=model_name,
tokenizer=tokenizer,
framework="tf",
aggregation_strategy=AggregationStrategy.FIRST,
)
self._test_pipeline(nlp)
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(
task="ner",
model=model_name,
tokenizer=tokenizer,
framework="tf",
aggregation_strategy=AggregationStrategy.SIMPLE,
)
self._test_pipeline(nlp)
@require_torch
def test_pt_ignore_subwords_slow_tokenizer_raises(self):
model_name = self.small_models[0]
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
with self.assertRaises(ValueError):
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
with self.assertRaises(ValueError):
pipeline(
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
)
with self.assertRaises(ValueError):
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
@require_torch
def test_pt_defaults_slow_tokenizer(self):
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name)
nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer)
self._test_pipeline(nlp)
@require_torch
def test_pt_defaults(self):
for model_name in self.small_models:
nlp = pipeline(task="ner", model=model_name)
self._test_pipeline(nlp)
@slow
@require_torch
def test_warnings(self):
with self.assertWarns(UserWarning):
token_classifier = pipeline(task="ner", model=self.small_models[0], grouped_entities=True)
self.assertEqual(token_classifier.aggregation_strategy, AggregationStrategy.SIMPLE)
with self.assertWarns(UserWarning):
token_classifier = pipeline(
task="ner", model=self.small_models[0], grouped_entities=True, ignore_subwords=True
)
self.assertEqual(token_classifier.aggregation_strategy, AggregationStrategy.FIRST)
@slow
@require_torch
def test_simple(self):
nlp = pipeline(task="ner", model="dslim/bert-base-NER", aggregation_strategy=AggregationStrategy.SIMPLE)
sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
sentence2 = "This is a simple test"
output = nlp(sentence)
output_ = nested_simplify(output)
self.assertEqual(
output_,
[
{
"entity_group": "PER",
"score": 0.996,
"word": "Sarah Jessica Parker",
"start": 6,
"end": 26,
},
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
],
)
output = nlp([sentence, sentence2])
output_ = nested_simplify(output)
self.assertEqual(
output_,
[
[
{"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
],
[],
],
)
@require_torch
def test_pt_small_ignore_subwords_available_for_fast_tokenizers(self):
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST
)
self._test_pipeline(nlp)
for model_name in self.small_models:
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
nlp = pipeline(
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.SIMPLE
)
self._test_pipeline(nlp)
class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
def setUp(self):
self.args_parser = TokenClassificationArgumentHandler()
def test_simple(self):
string = "This is a simple input"
inputs, offset_mapping = self.args_parser(string)
self.assertEqual(inputs, [string])
self.assertEqual(offset_mapping, None)
inputs, offset_mapping = self.args_parser([string, string])
self.assertEqual(inputs, [string, string])
self.assertEqual(offset_mapping, None)
inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
self.assertEqual(inputs, [string])
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])
inputs, offset_mapping = self.args_parser(
[string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
)
self.assertEqual(inputs, [string, string])
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
def test_errors(self):
string = "This is a simple input"
# 2 sentences, 1 offset_mapping, args
with self.assertRaises(TypeError):
self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])
# 2 sentences, 1 offset_mapping, args
with self.assertRaises(TypeError):
self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])
# 2 sentences, 1 offset_mapping, input_list
with self.assertRaises(ValueError):
self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])
# 2 sentences, 1 offset_mapping, input_list
with self.assertRaises(ValueError):
self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])
# 1 sentences, 2 offset_mapping
with self.assertRaises(ValueError):
self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
# 0 sentences, 1 offset_mapping
with self.assertRaises(TypeError):
self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])