mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 05:40:05 +06:00

* fix generation models * fix led * fix docs * add is_decoder * fix last docstrings * make style * fix t5 cross attentions * correct t5
1216 lines
51 KiB
Python
1216 lines
51 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import is_torch_available
|
|
from transformers.testing_utils import require_torch, slow, torch_device
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import BartForConditionalGeneration, BartTokenizer, top_k_top_p_filtering
|
|
from transformers.generation_beam_search import BeamSearchScorer
|
|
from transformers.generation_logits_process import (
|
|
HammingDiversityLogitsProcessor,
|
|
LogitsProcessorList,
|
|
MinLengthLogitsProcessor,
|
|
NoBadWordsLogitsProcessor,
|
|
NoRepeatNGramLogitsProcessor,
|
|
RepetitionPenaltyLogitsProcessor,
|
|
TemperatureLogitsWarper,
|
|
TopKLogitsWarper,
|
|
TopPLogitsWarper,
|
|
)
|
|
from transformers.generation_utils import (
|
|
BeamSearchDecoderOnlyOutput,
|
|
BeamSearchEncoderDecoderOutput,
|
|
GreedySearchDecoderOnlyOutput,
|
|
GreedySearchEncoderDecoderOutput,
|
|
SampleDecoderOnlyOutput,
|
|
SampleEncoderDecoderOutput,
|
|
)
|
|
|
|
|
|
class GenerationTesterMixin:
|
|
model_tester = None
|
|
all_generative_model_classes = ()
|
|
|
|
def _get_input_ids_and_config(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
input_ids = inputs_dict["input_ids"]
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
# cut to half length & take max batch_size 3
|
|
max_batch_size = 2
|
|
sequence_length = input_ids.shape[-1] // 2
|
|
input_ids = input_ids[:max_batch_size, :sequence_length]
|
|
attention_mask = attention_mask[:max_batch_size, :sequence_length]
|
|
|
|
# generate max 3 tokens
|
|
max_length = input_ids.shape[-1] + 3
|
|
if config.eos_token_id is not None and config.pad_token_id is None:
|
|
# hack to allow generate for models such as GPT2 as is done in `generate()`
|
|
config.pad_token_id = config.eos_token_id
|
|
return config, input_ids, attention_mask, max_length
|
|
|
|
@staticmethod
|
|
def _get_logits_processor_and_kwargs(input_length, eos_token_id, diversity_penalty=None):
|
|
process_kwargs = {
|
|
"min_length": input_length + 1,
|
|
"bad_words_ids": [[1, 0]],
|
|
"no_repeat_ngram_size": 2,
|
|
"repetition_penalty": 1.2,
|
|
}
|
|
logits_processor = LogitsProcessorList(
|
|
(
|
|
[
|
|
HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
|
|
]
|
|
if diversity_penalty is not None
|
|
else []
|
|
)
|
|
+ (
|
|
[
|
|
MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
|
|
]
|
|
if eos_token_id is not None
|
|
else []
|
|
)
|
|
+ [
|
|
NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
|
|
NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
|
|
RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
|
|
]
|
|
)
|
|
return process_kwargs, logits_processor
|
|
|
|
@staticmethod
|
|
def _get_warper_and_kwargs(num_beams):
|
|
warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
|
|
logits_warper = LogitsProcessorList(
|
|
[
|
|
TemperatureLogitsWarper(warp_kwargs["temperature"]),
|
|
TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
|
|
TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
|
|
]
|
|
)
|
|
return warp_kwargs, logits_warper
|
|
|
|
@staticmethod
|
|
def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
|
|
beam_kwargs = {
|
|
"early_stopping": False,
|
|
"length_penalty": 2.0,
|
|
"num_beams": 2,
|
|
"num_return_sequences": num_return_sequences,
|
|
}
|
|
beam_scorer = BeamSearchScorer(
|
|
batch_size=batch_size,
|
|
max_length=max_length,
|
|
num_beams=beam_kwargs["num_beams"],
|
|
device=torch_device,
|
|
length_penalty=beam_kwargs["length_penalty"],
|
|
do_early_stopping=beam_kwargs["early_stopping"],
|
|
num_beam_hyps_to_keep=num_return_sequences,
|
|
)
|
|
return beam_kwargs, beam_scorer
|
|
|
|
@staticmethod
|
|
def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
|
|
beam_kwargs = {
|
|
"early_stopping": False,
|
|
"length_penalty": 2.0,
|
|
"num_beams": 2,
|
|
"num_return_sequences": num_return_sequences,
|
|
"num_beam_groups": 2, # one beam per group
|
|
"diversity_penalty": 2.0,
|
|
}
|
|
beam_scorer = BeamSearchScorer(
|
|
batch_size=batch_size,
|
|
max_length=max_length,
|
|
num_beams=beam_kwargs["num_beams"],
|
|
device=torch_device,
|
|
length_penalty=beam_kwargs["length_penalty"],
|
|
do_early_stopping=beam_kwargs["early_stopping"],
|
|
num_beam_hyps_to_keep=num_return_sequences,
|
|
num_beam_groups=beam_kwargs["num_beam_groups"],
|
|
)
|
|
return beam_kwargs, beam_scorer
|
|
|
|
@staticmethod
|
|
def _get_encoder_outputs(
|
|
model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
|
|
):
|
|
encoder = model.get_encoder()
|
|
encoder_outputs = encoder(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
|
|
num_interleave, dim=0
|
|
)
|
|
input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
|
|
attention_mask = None
|
|
return encoder_outputs, input_ids, attention_mask
|
|
|
|
def _greedy_generate(
|
|
self,
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
max_length,
|
|
output_scores=False,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict_in_generate=False,
|
|
):
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], model.config.eos_token_id
|
|
)
|
|
|
|
kwargs = {}
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
|
|
output_generate = model.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
do_sample=False,
|
|
num_beams=1,
|
|
max_length=max_length,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
output_scores=output_scores,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**logits_process_kwargs,
|
|
)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
kwargs["encoder_outputs"] = encoder_outputs
|
|
|
|
with torch.no_grad():
|
|
output_greedy = model.greedy_search(
|
|
input_ids,
|
|
max_length=max_length,
|
|
attention_mask=attention_mask,
|
|
logits_processor=logits_processor,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
output_scores=output_scores,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**kwargs,
|
|
)
|
|
return output_greedy, output_generate
|
|
|
|
def _sample_generate(
|
|
self,
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
max_length,
|
|
num_return_sequences,
|
|
logits_processor,
|
|
logits_warper,
|
|
logits_warper_kwargs,
|
|
process_kwargs,
|
|
output_scores=False,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict_in_generate=False,
|
|
):
|
|
torch.manual_seed(0)
|
|
output_generate = model.generate(
|
|
input_ids,
|
|
do_sample=True,
|
|
num_beams=1,
|
|
max_length=max_length,
|
|
num_return_sequences=num_return_sequences,
|
|
attention_mask=attention_mask,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**logits_warper_kwargs,
|
|
**process_kwargs,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
kwargs = {}
|
|
if model.config.is_encoder_decoder:
|
|
encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
num_interleave=num_return_sequences,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
kwargs["encoder_outputs"] = encoder_outputs
|
|
input_ids_clone = input_ids_clone.repeat_interleave(num_return_sequences, dim=0)
|
|
else:
|
|
attention_mask_clone = attention_mask.repeat_interleave(num_return_sequences, dim=0)
|
|
input_ids_clone = input_ids.repeat_interleave(num_return_sequences, dim=0)
|
|
|
|
with torch.no_grad():
|
|
output_sample = model.sample(
|
|
input_ids_clone,
|
|
attention_mask=attention_mask_clone,
|
|
max_length=max_length,
|
|
logits_processor=logits_processor,
|
|
logits_warper=logits_warper,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**kwargs,
|
|
)
|
|
return output_sample, output_generate
|
|
|
|
def _beam_search_generate(
|
|
self,
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
max_length,
|
|
beam_scorer,
|
|
beam_kwargs,
|
|
logits_processor,
|
|
logits_process_kwargs,
|
|
output_scores=False,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict_in_generate=False,
|
|
):
|
|
output_generate = model.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
do_sample=False,
|
|
max_length=max_length,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**beam_kwargs,
|
|
**logits_process_kwargs,
|
|
)
|
|
|
|
# beam_search does not automatically interleave `batch_size` dim for `num_beams`
|
|
kwargs = {}
|
|
if model.config.is_encoder_decoder:
|
|
encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
num_interleave=beam_scorer.num_beams,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
kwargs["encoder_outputs"] = encoder_outputs
|
|
input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
else:
|
|
attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
|
|
with torch.no_grad():
|
|
output_beam_search = model.beam_search(
|
|
input_ids_clone,
|
|
beam_scorer,
|
|
max_length=max_length,
|
|
attention_mask=attention_mask_clone,
|
|
logits_processor=logits_processor,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**kwargs,
|
|
)
|
|
return output_generate, output_beam_search
|
|
|
|
def _beam_sample_generate(
|
|
self,
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
max_length,
|
|
num_return_sequences,
|
|
beam_scorer,
|
|
beam_kwargs,
|
|
logits_warper,
|
|
logits_warper_kwargs,
|
|
output_scores=False,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict_in_generate=False,
|
|
):
|
|
torch.manual_seed(0)
|
|
output_generate = model.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
do_sample=True,
|
|
max_length=max_length,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**beam_kwargs,
|
|
**logits_warper_kwargs,
|
|
)
|
|
# beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
|
|
kwargs = {}
|
|
if model.config.is_encoder_decoder:
|
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
num_interleave=beam_scorer.num_beams * num_return_sequences,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
kwargs["encoder_outputs"] = encoder_outputs
|
|
else:
|
|
attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)
|
|
|
|
torch.manual_seed(0)
|
|
with torch.no_grad():
|
|
output_beam_sample = model.beam_sample(
|
|
input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
|
|
beam_scorer,
|
|
max_length=max_length,
|
|
attention_mask=attention_mask,
|
|
logits_warper=logits_warper,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**kwargs,
|
|
)
|
|
|
|
return output_generate, output_beam_sample
|
|
|
|
def _group_beam_search_generate(
|
|
self,
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
max_length,
|
|
beam_scorer,
|
|
beam_kwargs,
|
|
logits_processor,
|
|
logits_process_kwargs,
|
|
output_scores=False,
|
|
output_attentions=False,
|
|
output_hidden_states=False,
|
|
return_dict_in_generate=False,
|
|
):
|
|
output_generate = model.generate(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
do_sample=False,
|
|
max_length=max_length,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**beam_kwargs,
|
|
**logits_process_kwargs,
|
|
)
|
|
|
|
# group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
|
|
kwargs = {}
|
|
if model.config.is_encoder_decoder:
|
|
encoder_outputs, input_ids_clone, attention_mask_clone = self._get_encoder_outputs(
|
|
model,
|
|
input_ids,
|
|
attention_mask,
|
|
num_interleave=beam_scorer.num_beams,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
)
|
|
kwargs["encoder_outputs"] = encoder_outputs
|
|
input_ids_clone = input_ids_clone.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
else:
|
|
attention_mask_clone = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
input_ids_clone = input_ids.repeat_interleave(beam_scorer.num_beams, dim=0)
|
|
|
|
with torch.no_grad():
|
|
output_group_beam_search = model.group_beam_search(
|
|
input_ids_clone,
|
|
beam_scorer,
|
|
max_length=max_length,
|
|
attention_mask=attention_mask_clone,
|
|
logits_processor=logits_processor,
|
|
output_scores=output_scores,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict_in_generate=return_dict_in_generate,
|
|
**kwargs,
|
|
)
|
|
return output_generate, output_group_beam_search
|
|
|
|
def test_greedy_generate(self):
|
|
# check `generate()` and `greedy_search()` are equal
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
# test old generation output for backwards compatibility
|
|
model = model_class(config).to(torch_device).eval()
|
|
output_greedy, output_generate = self._greedy_generate(
|
|
model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
|
|
)
|
|
self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
|
|
|
|
def test_greedy_generate_dict_outputs(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# disable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
config.use_cache = False
|
|
model = model_class(config).to(torch_device).eval()
|
|
output_greedy, output_generate = self._greedy_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
|
|
self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
|
|
else:
|
|
self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
|
|
self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())
|
|
|
|
for output in (output_greedy, output_generate):
|
|
self._check_outputs(output, input_ids, model.config)
|
|
|
|
def test_greedy_generate_dict_outputs_use_cache(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# enable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
|
|
if not hasattr(config, "use_cache"):
|
|
# only relevant if model has "use_cache"
|
|
return
|
|
|
|
config.use_cache = True
|
|
config.is_decoder = True
|
|
model = model_class(config).to(torch_device).eval()
|
|
output_greedy, output_generate = self._greedy_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())
|
|
|
|
for output in (output_greedy, output_generate):
|
|
self._check_outputs(output, input_ids, model.config, use_cache=True)
|
|
|
|
def test_sample_generate(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
model = model_class(config).to(torch_device).eval()
|
|
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], model.config.eos_token_id
|
|
)
|
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
|
|
# check `generate()` and `sample()` are equal
|
|
output_sample, output_generate = self._sample_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
num_return_sequences=1,
|
|
logits_processor=logits_processor,
|
|
logits_warper=logits_warper,
|
|
logits_warper_kwargs=logits_warper_kwargs,
|
|
process_kwargs=process_kwargs,
|
|
)
|
|
self.assertListEqual(output_sample.tolist(), output_generate.tolist())
|
|
|
|
# check `generate()` and `sample()` yield equal results for `num_return_sequences`
|
|
output_sample, output_generate = self._sample_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
num_return_sequences=3,
|
|
logits_processor=logits_processor,
|
|
logits_warper=logits_warper,
|
|
logits_warper_kwargs=logits_warper_kwargs,
|
|
process_kwargs=process_kwargs,
|
|
)
|
|
self.assertListEqual(output_sample.tolist(), output_generate.tolist())
|
|
|
|
def test_sample_generate_dict_output(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# disable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
config.use_cache = False
|
|
model = model_class(config).to(torch_device).eval()
|
|
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], model.config.eos_token_id
|
|
)
|
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
|
|
output_sample, output_generate = self._sample_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
num_return_sequences=2,
|
|
logits_processor=logits_processor,
|
|
logits_warper=logits_warper,
|
|
logits_warper_kwargs=logits_warper_kwargs,
|
|
process_kwargs=process_kwargs,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
|
|
self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
|
|
else:
|
|
self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
|
|
self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())
|
|
|
|
for output in (output_sample, output_generate):
|
|
self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
|
|
|
|
def test_beam_search_generate(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], config.eos_token_id
|
|
)
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
|
|
|
|
# check `generate()` and `beam_search()` are equal
|
|
output_generate, output_beam_search = self._beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
logits_processor=logits_processor,
|
|
)
|
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
|
|
|
|
# check `generate()` and `beam_search()` are equal for `num_return_sequences`
|
|
num_return_sequences = 2
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
|
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
|
|
)
|
|
|
|
output_generate, output_beam_search = self._beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
logits_processor=logits_processor,
|
|
)
|
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
|
|
|
|
def test_beam_search_generate_dict_output(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# disable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
config.use_cache = False
|
|
model = model_class(config).to(torch_device).eval()
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], config.eos_token_id
|
|
)
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
|
|
output_generate, output_beam_search = self._beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
logits_processor=logits_processor,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
if model.config.is_encoder_decoder:
|
|
self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
|
|
else:
|
|
self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
|
|
self.assertTrue(
|
|
torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
|
|
)
|
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
|
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item())
|
|
|
|
for output in (output_beam_search, output_generate):
|
|
self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)
|
|
|
|
def test_beam_search_generate_dict_outputs_use_cache(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# enable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
|
|
if not hasattr(config, "use_cache"):
|
|
# only relevant if model has "use_cache"
|
|
return
|
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], config.eos_token_id
|
|
)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
|
|
|
|
config.use_cache = True
|
|
config.is_decoder = True
|
|
model = model_class(config).to(torch_device).eval()
|
|
output_beam, output_generate = self._beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
logits_processor=logits_processor,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())
|
|
|
|
for output in (output_beam, output_generate):
|
|
self._check_outputs(
|
|
output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
|
|
)
|
|
|
|
def test_beam_sample_generate(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
print("Return dict", config.return_dict)
|
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
|
|
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
# check `generate()` and `beam_search()` are equal
|
|
# change `num_return_sequences = 2` but not for `beam_scorer`
|
|
num_return_sequences = 2
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
|
|
input_ids.shape[0] * num_return_sequences, max_length
|
|
)
|
|
beam_kwargs["num_return_sequences"] = num_return_sequences
|
|
|
|
output_generate, output_beam_sample = self._beam_sample_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
num_return_sequences=num_return_sequences,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_warper=logits_warper,
|
|
logits_warper_kwargs=logits_warper_kwargs,
|
|
)
|
|
self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())
|
|
|
|
def test_beam_sample_generate_dict_output(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
# disable cache
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
config.use_cache = False
|
|
model = model_class(config).to(torch_device).eval()
|
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
|
|
|
|
num_return_sequences = 2
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
|
|
input_ids.shape[0] * num_return_sequences, max_length
|
|
)
|
|
beam_kwargs["num_return_sequences"] = num_return_sequences
|
|
|
|
output_beam_sample, output_generate = self._beam_sample_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
num_return_sequences=num_return_sequences,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_warper=logits_warper,
|
|
logits_warper_kwargs=logits_warper_kwargs,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
|
|
if model.config.is_encoder_decoder:
|
|
self.assertIsInstance(output_beam_sample, BeamSearchEncoderDecoderOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
|
|
else:
|
|
self.assertIsInstance(output_beam_sample, BeamSearchDecoderOnlyOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
|
|
self.assertTrue(
|
|
torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
|
|
)
|
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
|
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item())
|
|
|
|
for output in (output_beam_sample, output_generate):
|
|
self._check_outputs(
|
|
output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
|
|
)
|
|
|
|
def test_generate_without_input_ids(self):
|
|
config, _, _, max_length = self._get_input_ids_and_config()
|
|
|
|
# if no bos token id => cannot generate from None
|
|
if config.bos_token_id is None:
|
|
return
|
|
|
|
for model_class in self.all_generative_model_classes:
|
|
model = model_class(config).to(torch_device)
|
|
model.eval()
|
|
|
|
output_ids_generate = model.generate(
|
|
do_sample=False,
|
|
max_length=max_length,
|
|
)
|
|
|
|
self.assertIsNotNone(output_ids_generate)
|
|
|
|
def test_group_beam_search_generate(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], config.eos_token_id, diversity_penalty=2.0
|
|
)
|
|
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
# check `generate()` and `group_beam_search()` are equal
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
|
|
output_generate, output_group_beam_search = self._group_beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_processor=logits_processor,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
)
|
|
self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
|
|
|
|
# check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
|
|
num_return_sequences = 2
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
|
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
|
|
)
|
|
output_generate, output_group_beam_search = self._group_beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_processor=logits_processor,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
)
|
|
self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
|
|
|
|
def test_group_beam_search_generate_dict_output(self):
|
|
for model_class in self.all_generative_model_classes:
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
|
|
config.use_cache = False
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
|
|
input_ids.shape[-1], config.eos_token_id, diversity_penalty=2.0
|
|
)
|
|
|
|
num_return_sequences = 1
|
|
if model.config.is_encoder_decoder:
|
|
max_length = 4
|
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
|
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
|
|
)
|
|
output_generate, output_group_beam_search = self._group_beam_search_generate(
|
|
model=model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_length=max_length,
|
|
beam_scorer=beam_scorer,
|
|
beam_kwargs=beam_kwargs,
|
|
logits_processor=logits_processor,
|
|
logits_process_kwargs=logits_process_kwargs,
|
|
output_scores=True,
|
|
output_hidden_states=True,
|
|
output_attentions=True,
|
|
return_dict_in_generate=True,
|
|
)
|
|
if model.config.is_encoder_decoder:
|
|
self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
|
|
else:
|
|
self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
|
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)
|
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
|
|
)
|
|
)
|
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
|
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item())
|
|
|
|
for output in (output_group_beam_search, output_generate):
|
|
self._check_outputs(
|
|
output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
|
|
)
|
|
|
|
def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
|
|
batch_size, seq_length = input_ids.shape
|
|
num_sequences_in_output = batch_size * num_return_sequences
|
|
gen_len = (
|
|
output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
|
|
)
|
|
|
|
# scores
|
|
self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)
|
|
|
|
# Attentions
|
|
if config.is_encoder_decoder:
|
|
# encoder
|
|
self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
|
|
# decoder
|
|
self._check_attentions_for_generate(
|
|
num_sequences_in_output,
|
|
output.decoder_attentions,
|
|
min_length=1,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
else:
|
|
# if use_cache first input is equal to no use_cache, so skip here
|
|
attentions = output.attentions if not use_cache else output.attentions[1:]
|
|
min_length = seq_length if not use_cache else seq_length + 1
|
|
self._check_attentions_for_generate(
|
|
num_sequences_in_output,
|
|
attentions=attentions,
|
|
min_length=min_length,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
# Hidden States
|
|
if config.is_encoder_decoder:
|
|
# encoder
|
|
self._check_encoder_hidden_states_for_generate(
|
|
output.encoder_hidden_states, batch_size, config, seq_length
|
|
)
|
|
|
|
# decoder
|
|
self._check_hidden_states_for_generate(
|
|
num_sequences_in_output,
|
|
output.decoder_hidden_states,
|
|
min_length=1,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
else:
|
|
# if use_cache first input is equal to no use_cache, so skip here
|
|
hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
|
|
min_length = seq_length if not use_cache else seq_length + 1
|
|
self._check_hidden_states_for_generate(
|
|
num_sequences_in_output,
|
|
hidden_states,
|
|
min_length=min_length,
|
|
max_length=output.sequences.shape[-1],
|
|
config=config,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
def _check_scores(self, batch_size, scores, length, config):
|
|
expected_shape = (batch_size, config.vocab_size)
|
|
self.assertIsInstance(scores, tuple)
|
|
self.assertEqual(len(scores), length)
|
|
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))
|
|
|
|
def _check_attentions_for_generate(
|
|
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(attentions, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
|
|
)
|
|
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_attentions in enumerate(attentions):
|
|
tgt_len = min_length + idx if not use_cache else 1
|
|
src_len = min_length + idx
|
|
|
|
expected_shape = (
|
|
batch_size * num_beam_groups,
|
|
config.num_attention_heads,
|
|
tgt_len,
|
|
src_len,
|
|
)
|
|
# check attn size
|
|
self.assertListEqual(
|
|
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
|
|
)
|
|
|
|
def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
|
|
encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
|
|
self.assertIsInstance(attentions, tuple)
|
|
self.assertListEqual(
|
|
[layer_attentions.shape for layer_attentions in attentions],
|
|
[encoder_expected_shape] * len(attentions),
|
|
)
|
|
|
|
def _check_hidden_states_for_generate(
|
|
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
|
|
):
|
|
self.assertIsInstance(hidden_states, tuple)
|
|
self.assertListEqual(
|
|
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
|
|
[True] * len(hidden_states),
|
|
)
|
|
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)
|
|
|
|
for idx, iter_hidden_states in enumerate(hidden_states):
|
|
seq_len = min_length + idx if not use_cache else 1
|
|
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
|
|
# check hidden size
|
|
self.assertListEqual(
|
|
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
|
|
[expected_shape] * len(iter_hidden_states),
|
|
)
|
|
|
|
def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
|
|
encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
|
|
self.assertIsInstance(hidden_states, tuple)
|
|
self.assertListEqual(
|
|
[layer_hidden_states.shape for layer_hidden_states in hidden_states],
|
|
[encoder_expected_shape] * len(hidden_states),
|
|
)
|
|
|
|
|
|
@require_torch
|
|
class UtilsFunctionsTest(unittest.TestCase):
|
|
|
|
# tests whether the top_k_top_p function behaves as expected
|
|
def test_top_k_top_p_filtering(self):
|
|
logits = torch.tensor(
|
|
[
|
|
[
|
|
8.2220991, # 3rd highest value; idx. 0
|
|
-0.5620044,
|
|
5.23229752,
|
|
4.0386393,
|
|
-6.8798378,
|
|
-0.54785802,
|
|
-3.2012153,
|
|
2.92777176,
|
|
1.88171953,
|
|
7.35341276,
|
|
8.43207833, # 2nd highest value; idx. 10
|
|
-9.85711836,
|
|
-5.96209236,
|
|
-1.13039161,
|
|
-7.1115294,
|
|
-0.8369633,
|
|
-5.3186408,
|
|
7.06427407,
|
|
0.81369344,
|
|
-0.82023817,
|
|
-5.9179796,
|
|
0.58813443,
|
|
-6.99778438,
|
|
4.71551189,
|
|
-0.18771637,
|
|
7.44020759, # 4th highest value; idx. 25
|
|
9.38450987, # 1st highest value; idx. 26
|
|
2.12662941,
|
|
-9.32562038,
|
|
2.35652522,
|
|
], # cummulative prob of 4 highest values <= 0.6
|
|
[
|
|
0.58425518,
|
|
4.53139238,
|
|
-5.57510464,
|
|
-6.28030699,
|
|
-7.19529503,
|
|
-4.02122551,
|
|
1.39337037,
|
|
-6.06707057,
|
|
1.59480517,
|
|
-9.643119,
|
|
0.03907799,
|
|
0.67231762,
|
|
-8.88206726,
|
|
6.27115922, # 4th highest value; idx. 13
|
|
2.28520723,
|
|
4.82767506,
|
|
4.30421368,
|
|
8.8275313, # 2nd highest value; idx. 17
|
|
5.44029958,
|
|
-4.4735794,
|
|
7.38579536, # 3rd highest value; idx. 20
|
|
-2.91051663,
|
|
2.61946077,
|
|
-2.5674762,
|
|
-9.48959302,
|
|
-4.02922645,
|
|
-1.35416918,
|
|
9.67702323, # 1st highest value; idx. 27
|
|
-5.89478553,
|
|
1.85370467,
|
|
], # cummulative prob of 4 highest values <= 0.6
|
|
],
|
|
dtype=torch.float,
|
|
device=torch_device,
|
|
)
|
|
|
|
non_inf_expected_idx = torch.tensor(
|
|
[[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
|
|
dtype=torch.long,
|
|
device=torch_device,
|
|
) # expected non filtered idx as noted above
|
|
|
|
non_inf_expected_output = torch.tensor(
|
|
[
|
|
8.2221,
|
|
8.4321,
|
|
7.4402,
|
|
9.3845,
|
|
6.2712,
|
|
8.8275,
|
|
7.3858,
|
|
9.6770,
|
|
], # expected non filtered values as noted above
|
|
dtype=torch.float,
|
|
device=torch_device,
|
|
)
|
|
|
|
output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
|
|
non_inf_output = output[output != -float("inf")].to(device=torch_device)
|
|
non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)
|
|
|
|
self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
|
|
self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
|
|
|
|
|
|
@require_torch
|
|
class GenerationIntegrationTests(unittest.TestCase):
|
|
@slow
|
|
def test_diverse_beam_search(self):
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
|
|
The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
|
|
"Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
|
|
The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""
|
|
|
|
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
|
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
|
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
|
|
|
|
outputs = bart_model.generate(
|
|
input_ids, num_beams=4, num_return_sequences=2, num_beam_groups=4, diversity_penalty=2.0
|
|
)
|
|
|
|
generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
self.assertListEqual(
|
|
generated_text,
|
|
[
|
|
"The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle name, as well as his father's first. It is the first baby for both of them.",
|
|
"Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the first child for both. The couple announced the pregnancy in January. The name Silas is the middle name of Timberlake's maternal grandfather. It's also his own middle name.",
|
|
],
|
|
)
|