transformers/src/transformers/models/bros/modeling_bros.py
Raushan Turganbay e435574721
🚨 Don't use cache in non-generative models (#38751)
* deprecate for 1 version

* style

* fix some tests

* fix esm

* skip for now, GC requires positional args but we have keyword args

* remove transpose for scores in modified models only

* skip fx trace tests
2025-07-01 09:08:21 +00:00

1150 lines
49 KiB
Python
Executable File

# coding=utf-8
# Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Bros model."""
import math
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import (
BaseModelOutputWithCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import ModelOutput, auto_docstring, can_return_tuple, logging
from ...utils.deprecation import deprecate_kwarg
from .configuration_bros import BrosConfig
logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro="""
Base class for outputs of token classification models.
"""
)
class BrosSpadeOutput(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
initial_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores for entity initial tokens (before SoftMax).
subsequent_token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length+1)`):
Classification scores for entity sequence tokens (before SoftMax).
"""
loss: Optional[torch.FloatTensor] = None
initial_token_logits: Optional[torch.FloatTensor] = None
subsequent_token_logits: Optional[torch.FloatTensor] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
class BrosPositionalEmbedding1D(nn.Module):
# Reference: https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py#L15
def __init__(self, config):
super().__init__()
self.dim_bbox_sinusoid_emb_1d = config.dim_bbox_sinusoid_emb_1d
inv_freq = 1 / (
10000 ** (torch.arange(0.0, self.dim_bbox_sinusoid_emb_1d, 2.0) / self.dim_bbox_sinusoid_emb_1d)
)
self.register_buffer("inv_freq", inv_freq)
def forward(self, pos_seq: torch.Tensor) -> torch.Tensor:
seq_size = pos_seq.size()
b1, b2, b3 = seq_size
sinusoid_inp = pos_seq.view(b1, b2, b3, 1) * self.inv_freq.view(1, 1, 1, self.dim_bbox_sinusoid_emb_1d // 2)
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
return pos_emb
class BrosPositionalEmbedding2D(nn.Module):
def __init__(self, config):
super().__init__()
self.dim_bbox = config.dim_bbox
self.x_pos_emb = BrosPositionalEmbedding1D(config)
self.y_pos_emb = BrosPositionalEmbedding1D(config)
def forward(self, bbox: torch.Tensor) -> torch.Tensor:
stack = []
for i in range(self.dim_bbox):
if i % 2 == 0:
stack.append(self.x_pos_emb(bbox[..., i]))
else:
stack.append(self.y_pos_emb(bbox[..., i]))
bbox_pos_emb = torch.cat(stack, dim=-1)
return bbox_pos_emb
class BrosBboxEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.bbox_sinusoid_emb = BrosPositionalEmbedding2D(config)
self.bbox_projection = nn.Linear(config.dim_bbox_sinusoid_emb_2d, config.dim_bbox_projection, bias=False)
def forward(self, bbox: torch.Tensor):
bbox_t = bbox.transpose(0, 1)
bbox_pos = bbox_t[None, :, :, :] - bbox_t[:, None, :, :]
bbox_pos_emb = self.bbox_sinusoid_emb(bbox_pos)
bbox_pos_emb = self.bbox_projection(bbox_pos_emb)
return bbox_pos_emb
class BrosTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
self.register_buffer(
"token_type_ids",
torch.zeros(
self.position_ids.size(),
dtype=torch.long,
device=self.position_ids.device,
),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BrosSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
@deprecate_kwarg("past_key_value", version="4.54.0")
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[torch.Tensor] = False,
) -> tuple[torch.Tensor]:
hidden_shape = (hidden_states.shape[0], -1, self.num_attention_heads, self.attention_head_size)
query_layer = self.query(hidden_states).view(hidden_shape).transpose(1, 2)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention:
key_layer = self.key(encoder_hidden_states).view(hidden_shape).transpose(1, 2)
value_layer = self.value(encoder_hidden_states).view(hidden_shape).transpose(1, 2)
attention_mask = encoder_attention_mask
else:
key_layer = self.key(hidden_states).view(hidden_shape).transpose(1, 2)
value_layer = self.value(hidden_states).view(hidden_shape).transpose(1, 2)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
# bbox positional encoding
batch_size, n_head, seq_length, d_head = query_layer.shape
bbox_pos_emb = bbox_pos_emb.view(seq_length, seq_length, batch_size, d_head)
bbox_pos_emb = bbox_pos_emb.permute([2, 0, 1, 3])
bbox_pos_scores = torch.einsum("bnid,bijd->bnij", (query_layer, bbox_pos_emb))
attention_scores = attention_scores + bbox_pos_scores
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BrosModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (None,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Bros
class BrosSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BrosAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BrosSelfAttention(config)
self.output = BrosSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads,
self.self.num_attention_heads,
self.self.attention_head_size,
self.pruned_heads,
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
@deprecate_kwarg("past_key_value", version="4.54.0")
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states=hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Bros
class BrosIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BrosOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BrosLayer(GradientCheckpointingLayer):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = BrosAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise Exception(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = BrosAttention(config)
self.intermediate = BrosIntermediate(config)
self.output = BrosOutput(config)
@deprecate_kwarg("past_key_value", version="4.54.0")
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> tuple[torch.Tensor]:
self_attention_outputs = self.attention(
hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
if self.is_decoder and encoder_hidden_states is not None:
if hasattr(self, "crossattention"):
raise Exception(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
)
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk,
self.chunk_size_feed_forward,
self.seq_len_dim,
attention_output,
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (None,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class BrosEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BrosLayer(config) for _ in range(config.num_hidden_layers)])
@deprecate_kwarg("past_key_values", version="4.54.0")
@deprecate_kwarg("use_cache", version="4.54.0")
@can_return_tuple
def forward(
self,
hidden_states: torch.Tensor,
bbox_pos_emb: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[tuple[torch.Tensor], BaseModelOutputWithCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states=hidden_states,
bbox_pos_emb=bbox_pos_emb,
attention_mask=attention_mask,
head_mask=layer_head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutputWithCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Bros
class BrosPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BrosRelationExtractor(nn.Module):
def __init__(self, config):
super().__init__()
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.head_hidden_size = config.hidden_size
self.classifier_dropout_prob = config.classifier_dropout_prob
self.drop = nn.Dropout(self.classifier_dropout_prob)
self.query = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
self.key = nn.Linear(self.backbone_hidden_size, self.n_relations * self.head_hidden_size)
self.dummy_node = nn.Parameter(torch.zeros(1, self.backbone_hidden_size))
def forward(self, query_layer: torch.Tensor, key_layer: torch.Tensor):
query_layer = self.query(self.drop(query_layer))
dummy_vec = self.dummy_node.unsqueeze(0).repeat(1, key_layer.size(1), 1)
key_layer = torch.cat([key_layer, dummy_vec], axis=0)
key_layer = self.key(self.drop(key_layer))
query_layer = query_layer.view(
query_layer.size(0), query_layer.size(1), self.n_relations, self.head_hidden_size
)
key_layer = key_layer.view(key_layer.size(0), key_layer.size(1), self.n_relations, self.head_hidden_size)
relation_score = torch.matmul(
query_layer.permute(2, 1, 0, 3), key_layer.permute(2, 1, 3, 0)
) # equivalent to torch.einsum("ibnd,jbnd->nbij", (query_layer, key_layer))
return relation_score
@auto_docstring
class BrosPreTrainedModel(PreTrainedModel):
config_class = BrosConfig
base_model_prefix = "bros"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@auto_docstring
class BrosModel(BrosPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
r"""
add_pooling_layer (bool, *optional*, defaults to `True`):
Whether to add a pooling layer
"""
super().__init__(config)
self.config = config
self.embeddings = BrosTextEmbeddings(config)
self.bbox_embeddings = BrosBboxEmbeddings(config)
self.encoder = BrosEncoder(config)
self.pooler = BrosPooler(config) if add_pooling_layer else None
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@deprecate_kwarg("past_key_values", version="4.54.0")
@deprecate_kwarg("use_cache", version="4.54.0")
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
bounding box.
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosModel
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosModel.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
>>> last_hidden_states = outputs.last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if bbox is None:
raise ValueError("You have to specify bbox")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
# if bbox has 2 points (4 float tensors) per token, convert it to 4 points (8 float tensors) per token
if bbox.shape[-1] == 4:
bbox = bbox[:, :, [0, 1, 2, 1, 2, 3, 0, 3]]
scaled_bbox = bbox * self.config.bbox_scale
bbox_position_embeddings = self.bbox_embeddings(scaled_bbox)
encoder_outputs = self.encoder(
embedding_output,
bbox_pos_emb=bbox_position_embeddings,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@auto_docstring
class BrosForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bros = BrosModel(config)
classifier_dropout = (
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
r"""
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
bounding box.
bbox_first_token_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
if bbox_first_token_mask is not None:
bbox_first_token_mask = bbox_first_token_mask.view(-1)
loss = loss_fct(
logits.view(-1, self.num_labels)[bbox_first_token_mask], labels.view(-1)[bbox_first_token_mask]
)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@auto_docstring(
custom_intro="""
Bros Model with a token classification head on top (initial_token_layers and subsequent_token_layer on top of the
hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. The initial_token_classifier is used to
predict the first token of each entity, and the subsequent_token_classifier is used to predict the subsequent
tokens within an entity. Compared to BrosForTokenClassification, this model is more robust to serialization errors
since it predicts next token from one token.
"""
)
class BrosSpadeEEForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.bros = BrosModel(config)
classifier_dropout = (
config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob
)
# Initial token classification for Entity Extraction (NER)
self.initial_token_classifier = nn.Sequential(
nn.Dropout(classifier_dropout),
nn.Linear(config.hidden_size, config.hidden_size),
nn.Dropout(classifier_dropout),
nn.Linear(config.hidden_size, config.num_labels),
)
# Subsequent token classification for Entity Extraction (NER)
self.subsequent_token_classifier = BrosRelationExtractor(config)
self.init_weights()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
initial_token_labels: Optional[torch.Tensor] = None,
subsequent_token_labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple[torch.Tensor], BrosSpadeOutput]:
r"""
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
bounding box.
bbox_first_token_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
initial_token_labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for the initial token classification.
subsequent_token_labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for the subsequent token classification.
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosSpadeEEForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosSpadeEEForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
last_hidden_states = outputs[0]
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
initial_token_logits = self.initial_token_classifier(last_hidden_states).transpose(0, 1).contiguous()
subsequent_token_logits = self.subsequent_token_classifier(last_hidden_states, last_hidden_states).squeeze(0)
# make subsequent token (sequence token classification) mask
inv_attention_mask = 1 - attention_mask
batch_size, max_seq_length = inv_attention_mask.shape
device = inv_attention_mask.device
invalid_token_mask = torch.cat([inv_attention_mask, torch.zeros([batch_size, 1]).to(device)], axis=1).bool()
subsequent_token_logits = subsequent_token_logits.masked_fill(
invalid_token_mask[:, None, :], torch.finfo(subsequent_token_logits.dtype).min
)
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device=device, dtype=torch.bool)
subsequent_token_logits = subsequent_token_logits.masked_fill(
self_token_mask[None, :, :], torch.finfo(subsequent_token_logits.dtype).min
)
subsequent_token_mask = attention_mask.view(-1).bool()
loss = None
if initial_token_labels is not None and subsequent_token_labels is not None:
loss_fct = CrossEntropyLoss()
# get initial token loss
initial_token_labels = initial_token_labels.view(-1)
if bbox_first_token_mask is not None:
bbox_first_token_mask = bbox_first_token_mask.view(-1)
initial_token_loss = loss_fct(
initial_token_logits.view(-1, self.num_labels)[bbox_first_token_mask],
initial_token_labels[bbox_first_token_mask],
)
else:
initial_token_loss = loss_fct(initial_token_logits.view(-1, self.num_labels), initial_token_labels)
subsequent_token_labels = subsequent_token_labels.view(-1)
subsequent_token_loss = loss_fct(
subsequent_token_logits.view(-1, max_seq_length + 1)[subsequent_token_mask],
subsequent_token_labels[subsequent_token_mask],
)
loss = initial_token_loss + subsequent_token_loss
return BrosSpadeOutput(
loss=loss,
initial_token_logits=initial_token_logits,
subsequent_token_logits=subsequent_token_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@auto_docstring(
custom_intro="""
Bros Model with a token classification head on top (a entity_linker layer on top of the hidden-states output) e.g.
for Entity-Linking. The entity_linker is used to predict intra-entity links (one entity to another entity).
"""
)
class BrosSpadeELForTokenClassification(BrosPreTrainedModel):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.n_relations = config.n_relations
self.backbone_hidden_size = config.hidden_size
self.bros = BrosModel(config)
(config.classifier_dropout if hasattr(config, "classifier_dropout") else config.hidden_dropout_prob)
self.entity_linker = BrosRelationExtractor(config)
self.init_weights()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
bbox: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
bbox_first_token_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple[torch.Tensor], TokenClassifierOutput]:
r"""
bbox ('torch.FloatTensor' of shape '(batch_size, num_boxes, 4)'):
Bounding box coordinates for each token in the input sequence. Each bounding box is a list of four values
(x1, y1, x2, y2), where (x1, y1) is the top left corner, and (x2, y2) is the bottom right corner of the
bounding box.
bbox_first_token_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to indicate the first token of each bounding box. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Examples:
```python
>>> import torch
>>> from transformers import BrosProcessor, BrosSpadeELForTokenClassification
>>> processor = BrosProcessor.from_pretrained("jinho8345/bros-base-uncased")
>>> model = BrosSpadeELForTokenClassification.from_pretrained("jinho8345/bros-base-uncased")
>>> encoding = processor("Hello, my dog is cute", add_special_tokens=False, return_tensors="pt")
>>> bbox = torch.tensor([[[0, 0, 1, 1]]]).repeat(1, encoding["input_ids"].shape[-1], 1)
>>> encoding["bbox"] = bbox
>>> outputs = model(**encoding)
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.bros(
input_ids=input_ids,
bbox=bbox,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
last_hidden_states = outputs[0]
last_hidden_states = last_hidden_states.transpose(0, 1).contiguous()
logits = self.entity_linker(last_hidden_states, last_hidden_states).squeeze(0)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
batch_size, max_seq_length = attention_mask.shape
device = attention_mask.device
self_token_mask = torch.eye(max_seq_length, max_seq_length + 1).to(device=device, dtype=torch.bool)
mask = bbox_first_token_mask.view(-1)
bbox_first_token_mask = torch.cat(
[
~bbox_first_token_mask,
torch.zeros([batch_size, 1], dtype=torch.bool, device=device),
],
axis=1,
)
logits = logits.masked_fill(bbox_first_token_mask[:, None, :], torch.finfo(logits.dtype).min)
logits = logits.masked_fill(self_token_mask[None, :, :], torch.finfo(logits.dtype).min)
loss = loss_fct(logits.view(-1, max_seq_length + 1)[mask], labels.view(-1)[mask])
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"BrosPreTrainedModel",
"BrosModel",
"BrosForTokenClassification",
"BrosSpadeEEForTokenClassification",
"BrosSpadeELForTokenClassification",
]