mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00

* try * try * fix * fix * fix --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
410 lines
16 KiB
Python
410 lines
16 KiB
Python
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch DepthPro model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import DepthProConfig
|
|
from transformers.file_utils import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import DepthProForDepthEstimation, DepthProModel
|
|
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import DepthProImageProcessor
|
|
|
|
|
|
class DepthProModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=8,
|
|
image_size=64,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
fusion_hidden_size=16,
|
|
intermediate_hook_ids=[1, 0],
|
|
intermediate_feature_dims=[10, 8],
|
|
scaled_images_ratios=[0.5, 1.0],
|
|
scaled_images_overlap_ratios=[0.0, 0.2],
|
|
scaled_images_feature_dims=[12, 12],
|
|
initializer_range=0.02,
|
|
use_fov_model=False,
|
|
image_model_config={
|
|
"model_type": "dinov2",
|
|
"num_hidden_layers": 2,
|
|
"hidden_size": 16,
|
|
"num_attention_heads": 1,
|
|
"patch_size": 4,
|
|
},
|
|
patch_model_config={
|
|
"model_type": "vit",
|
|
"num_hidden_layers": 2,
|
|
"hidden_size": 24,
|
|
"num_attention_heads": 2,
|
|
"patch_size": 6,
|
|
},
|
|
fov_model_config={
|
|
"model_type": "vit",
|
|
"num_hidden_layers": 2,
|
|
"hidden_size": 32,
|
|
"num_attention_heads": 4,
|
|
"patch_size": 8,
|
|
},
|
|
num_labels=3,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.fusion_hidden_size = fusion_hidden_size
|
|
self.intermediate_hook_ids = intermediate_hook_ids
|
|
self.intermediate_feature_dims = intermediate_feature_dims
|
|
self.scaled_images_ratios = scaled_images_ratios
|
|
self.scaled_images_overlap_ratios = scaled_images_overlap_ratios
|
|
self.scaled_images_feature_dims = scaled_images_feature_dims
|
|
self.initializer_range = initializer_range
|
|
self.use_fov_model = use_fov_model
|
|
self.image_model_config = image_model_config
|
|
self.patch_model_config = patch_model_config
|
|
self.fov_model_config = fov_model_config
|
|
self.num_labels = num_labels
|
|
|
|
self.hidden_size = image_model_config["hidden_size"]
|
|
self.num_hidden_layers = image_model_config["num_hidden_layers"]
|
|
self.num_attention_heads = image_model_config["num_attention_heads"]
|
|
|
|
# may be different for a backbone other than dinov2
|
|
self.out_size = patch_size // image_model_config["patch_size"]
|
|
self.seq_length = self.out_size**2 + 1 # we add 1 for the [CLS] token
|
|
|
|
n_fusion_blocks = len(intermediate_hook_ids) + len(scaled_images_ratios)
|
|
self.expected_depth_size = 2 ** (n_fusion_blocks + 1) * self.out_size
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return DepthProConfig(
|
|
patch_size=self.patch_size,
|
|
fusion_hidden_size=self.fusion_hidden_size,
|
|
intermediate_hook_ids=self.intermediate_hook_ids,
|
|
intermediate_feature_dims=self.intermediate_feature_dims,
|
|
scaled_images_ratios=self.scaled_images_ratios,
|
|
scaled_images_overlap_ratios=self.scaled_images_overlap_ratios,
|
|
scaled_images_feature_dims=self.scaled_images_feature_dims,
|
|
initializer_range=self.initializer_range,
|
|
image_model_config=self.image_model_config,
|
|
patch_model_config=self.patch_model_config,
|
|
fov_model_config=self.fov_model_config,
|
|
use_fov_model=self.use_fov_model,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = DepthProModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
|
|
config.num_labels = self.num_labels
|
|
model = DepthProForDepthEstimation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
result.predicted_depth.shape, (self.batch_size, self.expected_depth_size, self.expected_depth_size)
|
|
)
|
|
|
|
def create_and_check_for_fov(self, config, pixel_values, labels):
|
|
model = DepthProForDepthEstimation(config, use_fov_model=True)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# check if the fov_model (DinoV2-based encoder) is created
|
|
self.parent.assertIsNotNone(model.fov_model)
|
|
|
|
batched_pixel_values = pixel_values
|
|
row_pixel_values = pixel_values[:1]
|
|
|
|
with torch.no_grad():
|
|
model_batched_output_fov = model(batched_pixel_values).field_of_view
|
|
model_row_output_fov = model(row_pixel_values).field_of_view
|
|
|
|
# check if fov is returned
|
|
self.parent.assertIsNotNone(model_batched_output_fov)
|
|
self.parent.assertIsNotNone(model_row_output_fov)
|
|
|
|
# check output shape consistency for fov
|
|
self.parent.assertEqual(model_batched_output_fov.shape, (self.batch_size,))
|
|
|
|
# check equivalence between batched and single row outputs for fov
|
|
diff = torch.max(torch.abs(model_row_output_fov - model_batched_output_fov[:1]))
|
|
model_name = model.__class__.__name__
|
|
self.parent.assertTrue(
|
|
diff <= 1e-03,
|
|
msg=(f"Batched and Single row outputs are not equal in {model_name} for fov. Difference={diff}."),
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class DepthProModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as DepthPro does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (DepthProModel, DepthProForDepthEstimation) if is_torch_available() else ()
|
|
pipeline_model_mapping = (
|
|
{
|
|
"depth-estimation": DepthProForDepthEstimation,
|
|
"image-feature-extraction": DepthProModel,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torch_exportable = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = DepthProModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=DepthProConfig, has_text_modality=False, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
@unittest.skip(reason="DepthPro does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
def test_model_get_set_embeddings(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_depth_estimation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
|
|
|
|
def test_for_fov(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_fov(*config_and_inputs)
|
|
|
|
def test_training(self):
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ == "DepthProForDepthEstimation":
|
|
continue
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
|
|
continue
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ == "DepthProForDepthEstimation":
|
|
continue
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.use_cache = False
|
|
config.return_dict = True
|
|
|
|
if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.gradient_checkpointing_enable()
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecture seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
non_uniform_init_parms = [
|
|
# these encoders are vision transformers
|
|
# any layer outside these encoders is either Conv2d or ConvTranspose2d
|
|
# which use kaiming initialization
|
|
"patch_encoder",
|
|
"image_encoder",
|
|
"fov_model.encoder",
|
|
]
|
|
if param.requires_grad:
|
|
if any(x in name for x in non_uniform_init_parms):
|
|
# See PR #38607 (to avoid flakiness)
|
|
data = torch.flatten(param.data)
|
|
n_elements = torch.numel(data)
|
|
# skip 2.5% of elements on each side to avoid issues caused by `nn.init.trunc_normal_` described in
|
|
# https://github.com/huggingface/transformers/pull/27906#issuecomment-1846951332
|
|
n_elements_to_skip_on_each_side = int(n_elements * 0.025)
|
|
data_to_check = torch.sort(data).values
|
|
if n_elements_to_skip_on_each_side > 0:
|
|
data_to_check = data_to_check[
|
|
n_elements_to_skip_on_each_side:-n_elements_to_skip_on_each_side
|
|
]
|
|
self.assertIn(
|
|
((data_to_check.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
else:
|
|
self.assertTrue(
|
|
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
# this started when switched from normal initialization to kaiming_normal initialization
|
|
# maybe because the magnitude of offset values from ViT-encoders increases when followed by many convolution layers
|
|
def test_batching_equivalence(self, atol=1e-4, rtol=1e-4):
|
|
super().test_batching_equivalence(atol=atol, rtol=rtol)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_path = "apple/DepthPro-hf"
|
|
model = DepthProModel.from_pretrained(model_path)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@slow
|
|
class DepthProModelIntegrationTest(unittest.TestCase):
|
|
def test_inference_depth_estimation(self):
|
|
model_path = "apple/DepthPro-hf"
|
|
image_processor = DepthProImageProcessor.from_pretrained(model_path)
|
|
model = DepthProForDepthEstimation.from_pretrained(model_path).to(torch_device)
|
|
config = model.config
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
# verify the predicted depth
|
|
n_fusion_blocks = len(config.intermediate_hook_ids) + len(config.scaled_images_ratios)
|
|
out_size = config.image_model_config.image_size // config.image_model_config.patch_size
|
|
expected_depth_size = 2 ** (n_fusion_blocks + 1) * out_size
|
|
|
|
expected_shape = torch.Size((1, expected_depth_size, expected_depth_size))
|
|
self.assertEqual(outputs.predicted_depth.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor(
|
|
[[1.0582, 1.1225, 1.1335], [1.1154, 1.1398, 1.1486], [1.1434, 1.1500, 1.1643]]
|
|
).to(torch_device)
|
|
torch.testing.assert_close(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4, rtol=1e-4)
|
|
|
|
# verify the predicted fov
|
|
expected_shape = torch.Size((1,))
|
|
self.assertEqual(outputs.field_of_view.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([47.2459]).to(torch_device)
|
|
torch.testing.assert_close(outputs.field_of_view, expected_slice, atol=1e-4, rtol=1e-4)
|
|
|
|
def test_post_processing_depth_estimation(self):
|
|
model_path = "apple/DepthPro-hf"
|
|
image_processor = DepthProImageProcessor.from_pretrained(model_path)
|
|
model = DepthProForDepthEstimation.from_pretrained(model_path)
|
|
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt")
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
|
|
outputs = image_processor.post_process_depth_estimation(
|
|
outputs,
|
|
target_sizes=[[image.height, image.width]],
|
|
)
|
|
predicted_depth = outputs[0]["predicted_depth"]
|
|
expected_shape = torch.Size((image.height, image.width))
|
|
self.assertTrue(predicted_depth.shape == expected_shape)
|