transformers/notebooks/Comparing TF and PT models.ipynb

1254 lines
51 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparing TensorFlow (original) and PyTorch models\n",
"\n",
"You can use this small notebook to check the conversion of the model's weights from the TensorFlow model to the PyTorch model. In the following, we compare the weights of the last layer on a simple example (in `input.txt`) but both models returns all the hidden layers so you can check every stage of the model.\n",
"\n",
"To run this notebook, follow these instructions:\n",
"- make sure that your Python environment has both TensorFlow and PyTorch installed,\n",
"- download the original TensorFlow implementation,\n",
"- download a pre-trained TensorFlow model as indicaded in the TensorFlow implementation readme,\n",
"- run the script `convert_tf_checkpoint_to_pytorch.py` as indicated in the `README` to convert the pre-trained TensorFlow model to PyTorch.\n",
"\n",
"If needed change the relative paths indicated in this notebook (at the beggining of Sections 1 and 2) to point to the relevent models and code."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1/ TensorFlow code"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:49.025081Z",
"start_time": "2018-11-05T09:34:49.012403Z"
}
},
"outputs": [],
"source": [
"original_tf_inplem_dir = \"./tensorflow_code/\"\n",
"model_dir = \"../google_models/uncased_L-12_H-768_A-12/\"\n",
"\n",
"vocab_file = model_dir + \"vocab.txt\"\n",
"bert_config_file = model_dir + \"bert_config.json\"\n",
"init_checkpoint = model_dir + \"bert_model.ckpt\"\n",
"\n",
"input_file = \"./samples/input.txt\"\n",
"max_seq_length = 128"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:50.216833Z",
"start_time": "2018-11-05T09:34:49.027270Z"
}
},
"outputs": [],
"source": [
"import importlib.util\n",
"import sys\n",
"\n",
"spec = importlib.util.spec_from_file_location('*', original_tf_inplem_dir + '/extract_features.py')\n",
"module = importlib.util.module_from_spec(spec)\n",
"spec.loader.exec_module(module)\n",
"sys.modules['extract_features_tensorflow'] = module\n",
"\n",
"from extract_features_tensorflow import *"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:50.338711Z",
"start_time": "2018-11-05T09:34:50.218734Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:*** Example ***\n",
"INFO:tensorflow:unique_id: 0\n",
"INFO:tensorflow:tokens: [CLS] who was jim henson ? [SEP] jim henson was a puppet ##eer [SEP]\n",
"INFO:tensorflow:input_ids: 101 2040 2001 3958 27227 1029 102 3958 27227 2001 1037 13997 11510 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"INFO:tensorflow:input_type_ids: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n"
]
}
],
"source": [
"layer_indexes = list(range(12))\n",
"bert_config = modeling.BertConfig.from_json_file(bert_config_file)\n",
"tokenizer = tokenization.FullTokenizer(\n",
" vocab_file=vocab_file, do_lower_case=True)\n",
"examples = read_examples(input_file)\n",
"\n",
"features = convert_examples_to_features(\n",
" examples=examples, seq_length=max_seq_length, tokenizer=tokenizer)\n",
"unique_id_to_feature = {}\n",
"for feature in features:\n",
" unique_id_to_feature[feature.unique_id] = feature"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:53.784740Z",
"start_time": "2018-11-05T09:34:50.342200Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"WARNING:tensorflow:Estimator's model_fn (<function model_fn_builder.<locals>.model_fn at 0x11d0419d8>) includes params argument, but params are not passed to Estimator.\n",
"WARNING:tensorflow:Using temporary folder as model directory: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg\n",
"INFO:tensorflow:Using config: {'_model_dir': '/var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true\n",
"graph_options {\n",
" rewrite_options {\n",
" meta_optimizer_iterations: ONE\n",
" }\n",
"}\n",
", '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x1200ccb70>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=2, num_shards=1, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None), '_cluster': None}\n",
"WARNING:tensorflow:Setting TPUConfig.num_shards==1 is an unsupported behavior. Please fix as soon as possible (leaving num_shards as None.\n",
"INFO:tensorflow:_TPUContext: eval_on_tpu True\n",
"WARNING:tensorflow:eval_on_tpu ignored because use_tpu is False.\n"
]
}
],
"source": [
"is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2\n",
"run_config = tf.contrib.tpu.RunConfig(\n",
" master=None,\n",
" tpu_config=tf.contrib.tpu.TPUConfig(\n",
" num_shards=1,\n",
" per_host_input_for_training=is_per_host))\n",
"\n",
"model_fn = model_fn_builder(\n",
" bert_config=bert_config,\n",
" init_checkpoint=init_checkpoint,\n",
" layer_indexes=layer_indexes,\n",
" use_tpu=False,\n",
" use_one_hot_embeddings=False)\n",
"\n",
"# If TPU is not available, this will fall back to normal Estimator on CPU\n",
"# or GPU.\n",
"estimator = tf.contrib.tpu.TPUEstimator(\n",
" use_tpu=False,\n",
" model_fn=model_fn,\n",
" config=run_config,\n",
" predict_batch_size=1)\n",
"\n",
"input_fn = input_fn_builder(\n",
" features=features, seq_length=max_seq_length)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:58.695496Z",
"start_time": "2018-11-05T09:34:53.787465Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:Could not find trained model in model_dir: /var/folders/yx/cw8n_njx3js5jksyw_qlp8p00000gn/T/tmpt4nhctcg, running initialization to predict.\n",
"INFO:tensorflow:Calling model_fn.\n",
"INFO:tensorflow:Running infer on CPU\n",
"INFO:tensorflow:Done calling model_fn.\n",
"INFO:tensorflow:Graph was finalized.\n",
"INFO:tensorflow:Running local_init_op.\n",
"INFO:tensorflow:Done running local_init_op.\n",
"extracting layer 0\n",
"extracting layer 1\n",
"extracting layer 2\n",
"extracting layer 3\n",
"extracting layer 4\n",
"extracting layer 5\n",
"extracting layer 6\n",
"extracting layer 7\n",
"extracting layer 8\n",
"extracting layer 9\n",
"extracting layer 10\n",
"extracting layer 11\n",
"INFO:tensorflow:prediction_loop marked as finished\n",
"INFO:tensorflow:prediction_loop marked as finished\n"
]
}
],
"source": [
"tensorflow_all_out = []\n",
"for result in estimator.predict(input_fn, yield_single_examples=True):\n",
" unique_id = int(result[\"unique_id\"])\n",
" feature = unique_id_to_feature[unique_id]\n",
" output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n",
" tensorflow_all_out_features = []\n",
" # for (i, token) in enumerate(feature.tokens):\n",
" all_layers = []\n",
" for (j, layer_index) in enumerate(layer_indexes):\n",
" print(\"extracting layer {}\".format(j))\n",
" layer_output = result[\"layer_output_%d\" % j]\n",
" layers = collections.OrderedDict()\n",
" layers[\"index\"] = layer_index\n",
" layers[\"values\"] = layer_output\n",
" all_layers.append(layers)\n",
" tensorflow_out_features = collections.OrderedDict()\n",
" tensorflow_out_features[\"layers\"] = all_layers\n",
" tensorflow_all_out_features.append(tensorflow_out_features)\n",
"\n",
" output_json[\"features\"] = tensorflow_all_out_features\n",
" tensorflow_all_out.append(output_json)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:58.741194Z",
"start_time": "2018-11-05T09:34:58.697190Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"odict_keys(['linex_index', 'features'])\n",
"number of tokens 1\n",
"number of layers 12\n"
]
},
{
"data": {
"text/plain": [
"(128, 768)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(tensorflow_all_out))\n",
"print(len(tensorflow_all_out[0]))\n",
"print(tensorflow_all_out[0].keys())\n",
"print(\"number of tokens\", len(tensorflow_all_out[0]['features']))\n",
"print(\"number of layers\", len(tensorflow_all_out[0]['features'][0]['layers']))\n",
"tensorflow_all_out[0]['features'][0]['layers'][0]['values'].shape"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:58.779046Z",
"start_time": "2018-11-05T09:34:58.743861Z"
}
},
"outputs": [],
"source": [
"tensorflow_outputs = list(tensorflow_all_out[0]['features'][0]['layers'][t]['values'] for t in layer_indexes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2/ PyTorch code"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:34:58.934535Z",
"start_time": "2018-11-05T09:34:58.781393Z"
}
},
"outputs": [],
"source": [
"import extract_features\n",
"from extract_features import *"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:41:23.922979Z",
"start_time": "2018-11-05T09:41:23.890277Z"
}
},
"outputs": [],
"source": [
"init_checkpoint_pt = \"../google_models/uncased_L-12_H-768_A-12/pytorch_model.bin\""
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:00.435355Z",
"start_time": "2018-11-05T09:34:59.269985Z"
},
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"BertModel(\n",
" (embeddings): BERTEmbeddings(\n",
" (word_embeddings): Embedding(30522, 768)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (token_type_embeddings): Embedding(2, 768)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (encoder): BERTEncoder(\n",
" (layer): ModuleList(\n",
" (0): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (1): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (2): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (3): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (4): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (5): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (6): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (7): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (8): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (9): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (10): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (11): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (pooler): BERTPooler(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (activation): Tanh()\n",
" )\n",
")"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"device = torch.device(\"cpu\")\n",
"model = extract_features.BertModel(bert_config)\n",
"model.load_state_dict(torch.load(init_checkpoint_pt, map_location='cpu'))\n",
"model.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:00.476576Z",
"start_time": "2018-11-05T09:35:00.436902Z"
},
"code_folding": []
},
"outputs": [
{
"data": {
"text/plain": [
"BertModel(\n",
" (embeddings): BERTEmbeddings(\n",
" (word_embeddings): Embedding(30522, 768)\n",
" (position_embeddings): Embedding(512, 768)\n",
" (token_type_embeddings): Embedding(2, 768)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (encoder): BERTEncoder(\n",
" (layer): ModuleList(\n",
" (0): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (1): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (2): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (3): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (4): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (5): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (6): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (7): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (8): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (9): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (10): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (11): BERTLayer(\n",
" (attention): BERTAttention(\n",
" (self): BERTSelfAttention(\n",
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" (output): BERTSelfOutput(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" (intermediate): BERTIntermediate(\n",
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
" )\n",
" (output): BERTOutput(\n",
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
" (LayerNorm): BERTLayerNorm()\n",
" (dropout): Dropout(p=0.1)\n",
" )\n",
" )\n",
" )\n",
" )\n",
" (pooler): BERTPooler(\n",
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
" (activation): Tanh()\n",
" )\n",
")"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
"all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)\n",
"all_input_type_ids = torch.tensor([f.input_type_ids for f in features], dtype=torch.long)\n",
"all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)\n",
"\n",
"eval_data = TensorDataset(all_input_ids, all_input_mask, all_input_type_ids, all_example_index)\n",
"eval_sampler = SequentialSampler(eval_data)\n",
"eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=1)\n",
"\n",
"model.eval()"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:00.938199Z",
"start_time": "2018-11-05T09:35:00.478338Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[ 101, 2040, 2001, 3958, 27227, 1029, 102, 3958, 27227, 2001,\n",
" 1037, 13997, 11510, 102, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0]])\n",
"tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
" 0, 0, 0, 0, 0, 0, 0, 0]])\n",
"tensor([0])\n",
"layer 0 0\n",
"layer 1 1\n",
"layer 2 2\n",
"layer 3 3\n",
"layer 4 4\n",
"layer 5 5\n",
"layer 6 6\n",
"layer 7 7\n",
"layer 8 8\n",
"layer 9 9\n",
"layer 10 10\n",
"layer 11 11\n"
]
}
],
"source": [
"layer_indexes = list(range(12))\n",
"\n",
"pytorch_all_out = []\n",
"for input_ids, input_mask, input_type_ids, example_indices in eval_dataloader:\n",
" print(input_ids)\n",
" print(input_mask)\n",
" print(example_indices)\n",
" input_ids = input_ids.to(device)\n",
" input_mask = input_mask.to(device)\n",
"\n",
" all_encoder_layers, _ = model(input_ids, token_type_ids=input_type_ids, attention_mask=input_mask)\n",
"\n",
" for b, example_index in enumerate(example_indices):\n",
" feature = features[example_index.item()]\n",
" unique_id = int(feature.unique_id)\n",
" # feature = unique_id_to_feature[unique_id]\n",
" output_json = collections.OrderedDict()\n",
" output_json[\"linex_index\"] = unique_id\n",
" all_out_features = []\n",
" # for (i, token) in enumerate(feature.tokens):\n",
" all_layers = []\n",
" for (j, layer_index) in enumerate(layer_indexes):\n",
" print(\"layer\", j, layer_index)\n",
" layer_output = all_encoder_layers[int(layer_index)].detach().cpu().numpy()\n",
" layer_output = layer_output[b]\n",
" layers = collections.OrderedDict()\n",
" layers[\"index\"] = layer_index\n",
" layer_output = layer_output\n",
" layers[\"values\"] = layer_output if not isinstance(layer_output, (int, float)) else [layer_output]\n",
" all_layers.append(layers)\n",
"\n",
" out_features = collections.OrderedDict()\n",
" out_features[\"layers\"] = all_layers\n",
" all_out_features.append(out_features)\n",
" output_json[\"features\"] = all_out_features\n",
" pytorch_all_out.append(output_json)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:00.986964Z",
"start_time": "2018-11-05T09:35:00.941625Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"2\n",
"odict_keys(['linex_index', 'features'])\n",
"number of tokens 1\n",
"number of layers 12\n",
"hidden_size 128\n"
]
},
{
"data": {
"text/plain": [
"(128, 768)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print(len(pytorch_all_out))\n",
"print(len(pytorch_all_out[0]))\n",
"print(pytorch_all_out[0].keys())\n",
"print(\"number of tokens\", len(pytorch_all_out))\n",
"print(\"number of layers\", len(pytorch_all_out[0]['features'][0]['layers']))\n",
"print(\"hidden_size\", len(pytorch_all_out[0]['features'][0]['layers'][0]['values']))\n",
"pytorch_all_out[0]['features'][0]['layers'][0]['values'].shape"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:01.026420Z",
"start_time": "2018-11-05T09:35:00.988377Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(128, 768)\n",
"(128, 768)\n"
]
}
],
"source": [
"pytorch_outputs = list(pytorch_all_out[0]['features'][0]['layers'][t]['values'] for t in layer_indexes)\n",
"print(pytorch_outputs[0].shape)\n",
"print(pytorch_outputs[1].shape)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:01.065912Z",
"start_time": "2018-11-05T09:35:01.028986Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(128, 768)\n",
"(128, 768)\n"
]
}
],
"source": [
"print(tensorflow_outputs[0].shape)\n",
"print(tensorflow_outputs[1].shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3/ Comparing the standard deviation on the last layer of both models"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:35:01.105895Z",
"start_time": "2018-11-05T09:35:01.067712Z"
}
},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"ExecuteTime": {
"end_time": "2018-11-05T09:38:17.626158Z",
"start_time": "2018-11-05T09:38:17.589346Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"shape tensorflow layer, shape pytorch layer, standard deviation\n",
"((128, 768), (128, 768), 1.5258875e-07)\n",
"((128, 768), (128, 768), 2.342731e-07)\n",
"((128, 768), (128, 768), 2.801949e-07)\n",
"((128, 768), (128, 768), 3.5904986e-07)\n",
"((128, 768), (128, 768), 4.2842768e-07)\n",
"((128, 768), (128, 768), 5.127951e-07)\n",
"((128, 768), (128, 768), 6.14668e-07)\n",
"((128, 768), (128, 768), 7.063922e-07)\n",
"((128, 768), (128, 768), 7.906173e-07)\n",
"((128, 768), (128, 768), 8.475192e-07)\n",
"((128, 768), (128, 768), 8.975489e-07)\n",
"((128, 768), (128, 768), 4.1671223e-07)\n"
]
}
],
"source": [
"print('shape tensorflow layer, shape pytorch layer, standard deviation')\n",
"print('\\n'.join(list(str((np.array(tensorflow_outputs[i]).shape,\n",
" np.array(pytorch_outputs[i]).shape, \n",
" np.sqrt(np.mean((np.array(tensorflow_outputs[i]) - np.array(pytorch_outputs[i]))**2.0)))) for i in range(12))))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "48px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}