transformers/tests/test_modeling_transfo_xl.py
2020-03-08 16:25:03 +01:00

577 lines
17 KiB
Python

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
from transformers import is_torch_available
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow, torch_device
if is_torch_available():
import torch
from transformers import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
@require_torch
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (TransfoXLModel, TransfoXLLMHeadModel) if is_torch_available() else ()
all_generative_model_classes = (TransfoXLLMHeadModel,) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
class TransfoXLModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
mem_len=30,
clamp_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
d_embed=32,
num_attention_heads=4,
d_head=8,
d_inner=128,
div_val=2,
num_hidden_layers=5,
scope=None,
seed=1,
eos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.key_length = seq_length + mem_len
self.clamp_len = clamp_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.d_embed = d_embed
self.num_attention_heads = num_attention_heads
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.num_hidden_layers = num_hidden_layers
self.scope = scope
self.seed = seed
self.eos_token_id = eos_token_id
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_ids=self.eos_token_id,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
hidden_states_2, mems_2 = model(input_ids_2, mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1, mems_1 = model(input_ids_1)
loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
outputs = {
"loss_1": loss_1,
"mems_1": mems_1,
"lm_logits_1": lm_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"lm_logits_2": lm_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
def setUp(self):
self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_transfo_xl_model(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_model(*config_and_inputs)
self.model_tester.check_transfo_xl_model_output(output_result)
def test_transfo_xl_lm_head(self):
self.model_tester.set_seed()
config_and_inputs = self.model_tester.prepare_config_and_inputs()
output_result = self.model_tester.create_transfo_xl_lm_head(*config_and_inputs)
self.model_tester.check_transfo_xl_lm_head_output(output_result)
@slow
def test_model_from_pretrained(self):
for model_name in list(TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = TransfoXLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)
class TransfoXLModelLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_transfo_xl_wt103(self):
model = TransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
input_ids = torch.tensor(
[
[
33,
1297,
2,
1,
1009,
4,
1109,
11739,
4762,
358,
5,
25,
245,
22,
1706,
17,
20098,
5,
3215,
21,
37,
1110,
3,
13,
1041,
4,
24,
603,
490,
2,
71477,
20098,
104447,
2,
20961,
1,
2604,
4,
1,
329,
3,
6224,
831,
16002,
2,
8,
603,
78967,
29546,
23,
803,
20,
25,
416,
5,
8,
232,
4,
277,
6,
1855,
4601,
3,
29546,
54,
8,
3609,
5,
57211,
49,
4,
1,
277,
18,
8,
1755,
15691,
3,
341,
25,
416,
693,
42573,
71,
17,
401,
94,
31,
17919,
2,
29546,
7873,
18,
1,
435,
23,
11011,
755,
5,
5167,
3,
7983,
98,
84,
2,
29546,
3267,
8,
3609,
4,
1,
4865,
1075,
2,
6087,
71,
6,
346,
8,
5854,
3,
29546,
824,
1400,
1868,
2,
19,
160,
2,
311,
8,
5496,
2,
20920,
17,
25,
15097,
3,
24,
24,
0,
]
],
dtype=torch.long,
device=torch_device,
)
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
expected_output_ids = [
33,
1297,
2,
1,
1009,
4,
1109,
11739,
4762,
358,
5,
25,
245,
22,
1706,
17,
20098,
5,
3215,
21,
37,
1110,
3,
13,
1041,
4,
24,
603,
490,
2,
71477,
20098,
104447,
2,
20961,
1,
2604,
4,
1,
329,
3,
6224,
831,
16002,
2,
8,
603,
78967,
29546,
23,
803,
20,
25,
416,
5,
8,
232,
4,
277,
6,
1855,
4601,
3,
29546,
54,
8,
3609,
5,
57211,
49,
4,
1,
277,
18,
8,
1755,
15691,
3,
341,
25,
416,
693,
42573,
71,
17,
401,
94,
31,
17919,
2,
29546,
7873,
18,
1,
435,
23,
11011,
755,
5,
5167,
3,
7983,
98,
84,
2,
29546,
3267,
8,
3609,
4,
1,
4865,
1075,
2,
6087,
71,
6,
346,
8,
5854,
3,
29546,
824,
1400,
1868,
2,
19,
160,
2,
311,
8,
5496,
2,
20920,
17,
25,
15097,
3,
24,
24,
0,
33,
1,
1857,
2,
1,
1009,
4,
1109,
11739,
4762,
358,
5,
25,
245,
28,
1110,
3,
13,
1041,
4,
24,
603,
490,
2,
71477,
20098,
104447,
2,
20961,
1,
2604,
4,
1,
329,
3,
0,
]
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
output_ids = model.generate(input_ids, max_length=200, do_sample=False)
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)