mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-12 17:20:03 +06:00

* [VITS] Add to TTA pipeline * Update tests/pipelines/test_pipelines_text_to_audio.py Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com> * remove extra spaces --------- Co-authored-by: Yoach Lacombe <52246514+ylacombe@users.noreply.github.com>
191 lines
6.8 KiB
Python
191 lines
6.8 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import (
|
|
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
|
|
AutoProcessor,
|
|
TextToAudioPipeline,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_or_tf,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_torch_or_tf
|
|
class TextToAudioPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
|
|
# for now only test text_to_waveform and not text_to_spectrogram
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
speech_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt")
|
|
|
|
forward_params = {
|
|
"do_sample": False,
|
|
"max_new_tokens": 250,
|
|
}
|
|
|
|
outputs = speech_generator("This is a test", forward_params=forward_params)
|
|
# musicgen sampling_rate is not straightforward to get
|
|
self.assertIsNone(outputs["sampling_rate"])
|
|
|
|
audio = outputs["audio"]
|
|
self.assertEqual(ANY(np.ndarray), audio)
|
|
|
|
# test two examples side-by-side
|
|
outputs = speech_generator(["This is a test", "This is a second test"], forward_params=forward_params)
|
|
audio = [output["audio"] for output in outputs]
|
|
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
|
|
|
|
# test batching
|
|
outputs = speech_generator(
|
|
["This is a test", "This is a second test"], forward_params=forward_params, batch_size=2
|
|
)
|
|
self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt")
|
|
|
|
forward_params = {
|
|
# Using `do_sample=False` to force deterministic output
|
|
"do_sample": False,
|
|
"semantic_max_new_tokens": 100,
|
|
}
|
|
|
|
outputs = speech_generator("This is a test", forward_params=forward_params)
|
|
self.assertEqual(
|
|
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
|
|
outputs,
|
|
)
|
|
|
|
# test two examples side-by-side
|
|
outputs = speech_generator(
|
|
["This is a test", "This is a second test"],
|
|
forward_params=forward_params,
|
|
)
|
|
audio = [output["audio"] for output in outputs]
|
|
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
|
|
|
|
# test other generation strategy
|
|
forward_params = {
|
|
"do_sample": True,
|
|
"semantic_max_new_tokens": 100,
|
|
"semantic_num_return_sequences": 2,
|
|
}
|
|
|
|
outputs = speech_generator("This is a test", forward_params=forward_params)
|
|
audio = outputs["audio"]
|
|
self.assertEqual(ANY(np.ndarray), audio)
|
|
|
|
# test using a speaker embedding
|
|
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
|
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
|
|
history_prompt = temp_inp["history_prompt"]
|
|
forward_params["history_prompt"] = history_prompt
|
|
|
|
outputs = speech_generator(
|
|
["This is a test", "This is a second test"],
|
|
forward_params=forward_params,
|
|
batch_size=2,
|
|
)
|
|
audio = [output["audio"] for output in outputs]
|
|
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
def test_conversion_additional_tensor(self):
|
|
speech_generator = pipeline(task="text-to-audio", model="suno/bark-small", framework="pt", device=0)
|
|
processor = AutoProcessor.from_pretrained("suno/bark-small")
|
|
|
|
forward_params = {
|
|
"do_sample": True,
|
|
"semantic_max_new_tokens": 100,
|
|
}
|
|
|
|
# atm, must do to stay coherent with BarkProcessor
|
|
preprocess_params = {
|
|
"max_length": 256,
|
|
"add_special_tokens": False,
|
|
"return_attention_mask": True,
|
|
"return_token_type_ids": False,
|
|
"padding": "max_length",
|
|
}
|
|
outputs = speech_generator(
|
|
"This is a test",
|
|
forward_params=forward_params,
|
|
preprocess_params=preprocess_params,
|
|
)
|
|
|
|
temp_inp = processor("hey, how are you?", voice_preset="v2/en_speaker_5")
|
|
history_prompt = temp_inp["history_prompt"]
|
|
forward_params["history_prompt"] = history_prompt
|
|
|
|
# history_prompt is a torch.Tensor passed as a forward_param
|
|
# if generation is successful, it means that it was passed to the right device
|
|
outputs = speech_generator(
|
|
"This is a test", forward_params=forward_params, preprocess_params=preprocess_params
|
|
)
|
|
self.assertEqual(
|
|
{"audio": ANY(np.ndarray), "sampling_rate": 24000},
|
|
outputs,
|
|
)
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_vits_model_pt(self):
|
|
speech_generator = pipeline(task="text-to-audio", model="facebook/mms-tts-eng", framework="pt")
|
|
|
|
outputs = speech_generator("This is a test")
|
|
self.assertEqual(outputs["sampling_rate"], 16000)
|
|
|
|
audio = outputs["audio"]
|
|
self.assertEqual(ANY(np.ndarray), audio)
|
|
|
|
# test two examples side-by-side
|
|
outputs = speech_generator(["This is a test", "This is a second test"])
|
|
audio = [output["audio"] for output in outputs]
|
|
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
|
|
|
|
# test batching
|
|
outputs = speech_generator(["This is a test", "This is a second test"], batch_size=2)
|
|
self.assertEqual(ANY(np.ndarray), outputs[0]["audio"])
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
speech_generator = TextToAudioPipeline(model=model, tokenizer=tokenizer)
|
|
return speech_generator, ["This is a test", "Another test"]
|
|
|
|
def run_pipeline_test(self, speech_generator, _):
|
|
outputs = speech_generator("This is a test")
|
|
self.assertEqual(ANY(np.ndarray), outputs["audio"])
|
|
|
|
forward_params = {"num_return_sequences": 2, "do_sample": True}
|
|
outputs = speech_generator(["This is great !", "Something else"], forward_params=forward_params)
|
|
audio = [output["audio"] for output in outputs]
|
|
self.assertEqual([ANY(np.ndarray), ANY(np.ndarray)], audio)
|