mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 12:50:06 +06:00

* enable trainer test cases on xpu Signed-off-by: Matrix Yao <matrix.yao@intel.com> * fix style Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Matrix Yao <matrix.yao@intel.com>
92 lines
2.5 KiB
Python
92 lines
2.5 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.utils.data import Dataset
|
|
|
|
from transformers import (
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.testing_utils import (
|
|
TestCasePlus,
|
|
backend_device_count,
|
|
execute_subprocess_async,
|
|
get_torch_dist_unique_port,
|
|
require_torch_multi_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
def gather_from_all_gpus(tensor, world_size):
|
|
# Prepare a list to gather tensors from all processes
|
|
gather_list = [torch.zeros_like(tensor) for _ in range(world_size)]
|
|
dist.all_gather(gather_list, tensor)
|
|
return gather_list # List of tensors from all ranks
|
|
|
|
|
|
class DummyDataset(Dataset):
|
|
def __init__(self):
|
|
self.length = 64
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
def __getitem__(self, i) -> int:
|
|
x = random.random()
|
|
y = np.random.random()
|
|
z = torch.rand([]).item()
|
|
return {"x": torch.tensor([x, y, z])}
|
|
|
|
|
|
class DummyModel(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fc = nn.Linear(3, 1)
|
|
|
|
def forward(self, x):
|
|
local_tensor = torch.tensor(x, device=torch_device)
|
|
gathered = gather_from_all_gpus(local_tensor, dist.get_world_size())
|
|
assert not all(torch.allclose(t, gathered[0]) for t in gathered[1:])
|
|
y = self.fc(x)
|
|
return (y.mean(), y)
|
|
|
|
|
|
class TestTrainerDistributedWorkerSeed(TestCasePlus):
|
|
@require_torch_multi_accelerator
|
|
def test_trainer(self):
|
|
device_count = backend_device_count(torch_device)
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
distributed_args = f"""--nproc_per_node={device_count}
|
|
--master_port={get_torch_dist_unique_port()}
|
|
{self.test_file_dir}/test_trainer_distributed_worker_seed.py
|
|
""".split()
|
|
args = f"--output_dir {output_dir}".split()
|
|
cmd = ["torchrun"] + distributed_args + args
|
|
execute_subprocess_async(cmd, env=self.get_env())
|
|
|
|
|
|
def run_distributed_training(training_args):
|
|
set_seed(42)
|
|
model = DummyModel()
|
|
dataset = DummyDataset()
|
|
training_args.max_steps = 10
|
|
# dataloader_num_workers must be > 0 to enable worker_init_fn
|
|
training_args.dataloader_num_workers = 2
|
|
trainer = Trainer(
|
|
model,
|
|
training_args,
|
|
train_dataset=dataset,
|
|
)
|
|
trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = HfArgumentParser((TrainingArguments,))
|
|
training_args = parser.parse_args_into_dataclasses()[0]
|
|
run_distributed_training(training_args)
|