mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
218 lines
7.5 KiB
Python
218 lines
7.5 KiB
Python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VitPose backbone model."""
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
from transformers import VitPoseBackboneConfig
|
|
from transformers.testing_utils import require_torch, torch_device
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_backbone_common import BackboneTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import VitPoseBackbone
|
|
|
|
|
|
if is_vision_available():
|
|
pass
|
|
|
|
|
|
class VitPoseBackboneModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=[16 * 8, 12 * 8],
|
|
patch_size=[8, 8],
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=2,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.scope = scope
|
|
|
|
# in VitPoseBackbone, the seq length equals the number of patches
|
|
num_patches = (image_size[0] // patch_size[0]) * (image_size[1] // patch_size[1])
|
|
self.seq_length = num_patches
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return VitPoseBackboneConfig(
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
initializer_range=self.initializer_range,
|
|
num_labels=self.num_labels,
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
pixel_values,
|
|
labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VitPoseBackboneModelTest(ModelTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as VitPoseBackbone does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (VitPoseBackbone,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
test_torch_exportable = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = VitPoseBackboneModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=VitPoseBackboneConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# TODO: @Pavel
|
|
@unittest.skip(reason="currently failing")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support input and output embeddings")
|
|
def test_model_get_set_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support feedforward chunking")
|
|
def test_feed_forward_chunking(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not output a loss")
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support training yet")
|
|
def test_training(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support training yet")
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="VitPoseBackbone does not support training yet")
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_torch_export(self):
|
|
# Dense architecture
|
|
super().test_torch_export()
|
|
|
|
# MOE architecture
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.num_experts = 2
|
|
config.part_features = config.hidden_size // config.num_experts
|
|
inputs_dict["dataset_index"] = torch.tensor([0] * self.model_tester.batch_size, device=torch_device)
|
|
super().test_torch_export(config=config, inputs_dict=inputs_dict)
|
|
|
|
|
|
@require_torch
|
|
class VitPoseBackboneTest(unittest.TestCase, BackboneTesterMixin):
|
|
all_model_classes = (VitPoseBackbone,) if is_torch_available() else ()
|
|
config_class = VitPoseBackboneConfig
|
|
|
|
has_attentions = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = VitPoseBackboneModelTester(self)
|