transformers/docker
Wenhua Cheng b3492ff9f7
Add AutoRound quantization support (#37393)
* add auto-round support

* Update src/transformers/quantizers/auto.py

Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>

* fix style issue

Signed-off-by: wenhuach <wenhuach87@gmail.com>

* tiny change

* tiny change

* refine ut and doc

* revert unnecessary change

* tiny change

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* try to fix style issue

* fix doc issue

* Update tests/quantization/autoround/test_auto_round.py

* fix comments

* Update tests/quantization/autoround/test_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* Update tests/quantization/autoround/test_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update doc

* Update src/transformers/quantizers/quantizer_auto_round.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* update

* update

* fix

* try to fix style issue

* Update src/transformers/quantizers/auto.py

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* Update docs/source/en/quantization/auto_round.md

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

* update

* fix style issue

* update doc

* update doc

* Refine the doc

* refine doc

* revert one change

* set sym to True by default

* Enhance the unit test's robustness.

* update

* add torch dtype

* tiny change

* add awq convert test

* fix typo

* update

* fix packing format issue

* use one gpu

---------

Signed-off-by: wenhuach <wenhuach87@gmail.com>
Co-authored-by: Ilyas Moutawwakil <57442720+IlyasMoutawwakil@users.noreply.github.com>
Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
Co-authored-by: Shen, Haihao <haihao.shen@intel.com>
2025-04-22 13:56:54 +02:00
..
transformers-all-latest-gpu Remove triton mlp kernel, not compiling for some models (#37449) 2025-04-11 12:47:13 +02:00
transformers-doc-builder Use python 3.10 for docbuild (#28399) 2024-01-11 14:39:49 +01:00
transformers-gpu TF: TF 2.10 unpin + related onnx test skips (#18995) 2022-09-12 19:30:27 +01:00
transformers-past-gpu DeepSpeed github repo move sync (#36021) 2025-02-05 08:19:31 -08:00
transformers-pytorch-amd-gpu Update amd pytorch index to match base image (#36347) 2025-02-24 16:17:20 +01:00
transformers-pytorch-deepspeed-amd-gpu AMD DeepSpeed image additional HIP dependencies (#36195) 2025-02-17 11:50:49 +01:00
transformers-pytorch-deepspeed-latest-gpu update deepspeed docker (#37371) 2025-04-09 14:54:06 +02:00
transformers-pytorch-deepspeed-nightly-gpu update deepspeed docker (#37371) 2025-04-09 14:54:06 +02:00
transformers-pytorch-gpu use torch 2.6 for daily CI (#35985) 2025-01-31 18:58:23 +01:00
transformers-pytorch-tpu Rename master to main for notebooks links and leftovers (#16397) 2022-03-25 09:12:23 -04:00
transformers-quantization-latest-gpu Add AutoRound quantization support (#37393) 2025-04-22 13:56:54 +02:00
transformers-tensorflow-gpu pin tensorflow_probability<0.22 in docker files (#34381) 2024-10-28 11:59:46 +01:00
consistency.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
custom-tokenizers.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
examples-tf.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
examples-torch.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
exotic-models.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
jax-light.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
pipeline-tf.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
pipeline-torch.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
quality.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
README.md Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
tf-light.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
torch-jax-light.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00
torch-light.dockerfile [chat-template] fix video loading (#37146) 2025-04-02 11:27:50 +02:00
torch-tf-light.dockerfile Updated docker files to use uv for installing packages (#36957) 2025-03-25 18:12:51 +01:00

Dockers for transformers

In this folder you will find various docker files, and some subfolders.

  • dockerfiles (ex: consistency.dockerfile) present under ~/docker are used for our "fast" CIs. You should be able to use them for tasks that only need CPU. For example torch-light is a very light weights container (703MiB).
  • subfolders contain dockerfiles used for our slow CIs, which can be used for GPU tasks, but they are BIG as they were not specifically designed for a single model / single task. Thus the ~/docker/transformers-pytorch-gpu includes additional dependencies to allow us to run ALL model tests (say librosa or tesseract, which you do not need to run LLMs)

Note that in both case, you need to run uv pip install -e ., which should take around 5 seconds. We do it outside the dockerfile for the need of our CI: we checkout a new branch each time, and the transformers code is thus updated.

We are open to contribution, and invite the community to create dockerfiles with potential arguments that properly choose extras depending on the model's dependencies! 🤗