transformers/tests/models/llama/test_tokenization_llama.py
Arthur b15343de6f
[Patch-t5-tokenizer] Patches the changes on T5 to make sure previous behaviour is still valide for beginning of words (#24622)
* patch `_tokenize` function

* more tests

* properly fix

* fixup

* Update src/transformers/models/t5/tokenization_t5.py

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* fix without ifs

* update

* protect import

* add python processing

* is first needed

* add doc and update with lefacy

* updaate

* fix T5 SPM converter

* styling

* fix T5 warning

* add is_seqio_available

* remove is_first

* revert some changes

* more tests and update

* update llama test batterie

* fixup

* refactor T5 spm common tests

* draft the llama tests

* update

* uopdate test

* nits

* refine

* name nit

* fix t5 tests

* fix T5

* update

* revert convert slow to fast changes that fail lots of tests

* legacy support

* fixup

* nits is first not defined

* don't use legacy behaviour for switch transformers

* style

* My attempt to check.

* nits

* fixes

* update

* fixup

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* updates

* fixup

* add legacy warning

* fixup

* warning_once nit

* update t5 documentation test

* update llama tok documentation

* add space to warning

* nits

* nit

* Apply suggestions from code review

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>

* last nits

---------

Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
2023-07-11 15:02:18 +02:00

587 lines
26 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import shutil
import tempfile
import unittest
from datasets import load_dataset
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
LlamaTokenizer,
LlamaTokenizerFast,
is_torch_available,
)
from transformers.convert_slow_tokenizer import convert_slow_tokenizer
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
pass
@require_sentencepiece
@require_tokenizers
class LlamaTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = LlamaTokenizer
test_rust_tokenizer = False
test_sentencepiece = True
from_pretrained_kwargs = {}
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.save_pretrained(self.tmpdirname)
def test_full_tokenizer(self):
tokenizer = LlamaTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[285, 46, 10, 170, 382],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
@unittest.skip("Let's wait for the fast tokenizer!")
def test_save_pretrained(self):
self.tokenizers_list += (self.rust_tokenizer_class, "hf-internal-testing/llama-tokenizer", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=True
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=False
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
@require_torch
def test_batch_tokenization(self):
if not self.test_seq2seq:
return
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
try:
batch = tokenizer(
text=text,
max_length=3,
max_target_length=10,
return_tensors="pt",
)
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1], 3)
# max_target_length will default to max_length if not specified
batch = tokenizer(text, max_length=3, return_tensors="pt")
self.assertEqual(batch.input_ids.shape[1], 3)
batch_encoder_only = tokenizer(text=text, max_length=3, max_target_length=10, return_tensors="pt")
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[1, 4103, 689, 414, 313, 24784, 368, 2998, 408, 282, 3637, 25350, 29899, 9067, 414, 322, 282, 3637, 25350, 29899, 1457, 3018, 1312, 29899, 2151, 29897, 8128, 2498, 29899, 15503, 4220, 6956, 1973, 313, 13635, 29911, 29892, 402, 7982, 29899, 29906, 29892, 1528, 13635, 29911, 29874, 29892, 1060, 26369, 29892, 6652, 309, 29933, 814, 29892, 1060, 29931, 6779, 11410, 363, 18385, 17088, 7634, 11235, 313, 25103, 29965, 29897, 322, 18385, 17088, 28203, 313, 25103, 29954, 29897, 411, 975, 29871, 29941, 29906, 29974, 758, 3018, 1312, 4733, 297, 29871, 29896, 29900, 29900, 29974, 10276, 322, 6483, 1006, 3372, 3097, 1546, 435, 1165, 29892, 10772, 29911, 25350, 322, 323, 6073, 17907, 29889], [1, 350, 20161, 338, 8688, 304, 758, 29899, 14968, 6483, 21000, 8684, 284, 22540, 515, 443, 29880, 24025, 1426, 491, 14002, 368, 4195, 292, 373, 1716, 2175, 322, 1492, 3030, 297, 599, 15359, 29889], [1, 450, 4996, 17354, 1701, 29916, 432, 17204, 975, 278, 17366, 11203, 29889]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="hf-internal-testing/llama-tokenizer",
revision="0984d03108b1a041ed679bd253b6519b7e1a4778",
padding=False,
)
def test_picklable(self):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SAMPLE_VOCAB, f.name)
tokenizer = LlamaTokenizer(f.name, keep_accents=True)
pickled_tokenizer = pickle.dumps(tokenizer)
pickle.loads(pickled_tokenizer)
@require_torch
@require_sentencepiece
@require_tokenizers
class LlamaIntegrationTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
checkpoint_name = "hf-internal-testing/llama-tokenizer"
cls.tokenizer: LlamaTokenizer = LlamaTokenizer.from_pretrained(checkpoint_name)
cls.rust_tokenizer = LlamaTokenizerFast.from_pretrained(checkpoint_name)
return cls
@require_torch
def integration_tests(self):
inputs = self.tokenizer(
["The following string should be properly encoded: Hello.", "But ird and ปี ird ด"],
return_tensors="pt",
)
self.assertEqual(
nested_simplify(inputs),
{
"input_ids": [
[1, 450, 1494, 1347, 881, 367, 6284, 18511, 29901, 15043, 29889],
[1, 1205, 29871, 1823, 322, 29871, 31010, 30691, 1678, 1823, 1678, 30718],
],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
},
)
def test_fast_special_tokens(self):
slow_tokenizer = self.tokenizer
fast_tokenizer = self.rust_tokenizer
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [1, 319, 4559, 1243]
fast_tokenizer.add_eos_token = False
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [1, 319, 4559, 1243]
fast_tokenizer.add_eos_token = True
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [1, 319, 4559, 1243, 2]
slow_tokenizer.add_eos_token = True
slow = slow_tokenizer.encode("A sample test", add_special_tokens=True)
assert slow == [1, 319, 4559, 1243, 2]
fast_tokenizer = LlamaTokenizerFast.from_pretrained(
"hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
)
fast = fast_tokenizer.encode("A sample test", add_special_tokens=True)
assert fast == [319, 4559, 1243, 2]
slow_tokenzier = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer", add_eos_token=True, add_bos_token=False
)
slow = slow_tokenzier.encode("A sample test", add_special_tokens=True)
assert slow == [319, 4559, 1243, 2]
self.tokenizer.add_eos_token = False
self.rust_tokenizer.add_eos_token = False
@slow
def test_conversion(self):
# This is excruciatingly slow since it has to recreate the entire merge
# list from the original vocabulary in spm
self.rust_tokenizer.save_pretrained("./out")
with tempfile.TemporaryDirectory() as dirname:
self.rust_tokenizer.save_pretrained(dirname)
with open(os.path.join(dirname, "tokenizer.json"), "r") as f:
old_serialized = f.read()
new_tokenizer = convert_slow_tokenizer(self.tokenizer)
with tempfile.NamedTemporaryFile() as f:
new_tokenizer.save(f.name)
# Re-opening since `f` is in bytes.
new_serialized = open(f.name, "r").read()
with open("out_tokenizer.json", "w") as g:
g.write(new_serialized)
self.assertEqual(old_serialized, new_serialized)
def test_simple_encode_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
self.assertEqual(rust_tokenizer.encode("This is a test"), [1, 910, 338, 263, 1243])
self.assertEqual(pyth_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
self.assertEqual(rust_tokenizer.decode([1, 910, 338, 263, 1243], skip_special_tokens=True), "This is a test")
# bytefallback showcase
self.assertEqual(pyth_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])
self.assertEqual(rust_tokenizer.encode("生活的真谛是"), [1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392])
self.assertEqual(
pyth_tokenizer.decode(
[1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
),
"生活的真谛是",
)
self.assertEqual(
rust_tokenizer.decode(
[1, 29871, 30486, 31704, 30210, 30848, 235, 179, 158, 30392], skip_special_tokens=True
),
"生活的真谛是",
)
# Inner spaces showcase
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [1, 6324, 29871, 15043])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [1, 6324, 29871, 15043])
self.assertEqual(pyth_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([1, 6324, 29871, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode("Hi Hello"), [1, 6324, 259, 15043])
self.assertEqual(rust_tokenizer.encode("Hi Hello"), [1, 6324, 259, 15043])
self.assertEqual(pyth_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(rust_tokenizer.decode([1, 6324, 259, 15043], skip_special_tokens=True), "Hi Hello")
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
self.assertEqual(rust_tokenizer.encode(" "), [1, 259])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 1678])
self.assertEqual(rust_tokenizer.encode(" "), [1, 1678])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])
def test_no_differences_showcase(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 259])
self.assertEqual(rust_tokenizer.encode(" "), [1, 259])
self.assertEqual(pyth_tokenizer.encode(" "), [1, 1678])
self.assertEqual(rust_tokenizer.encode(" "), [1, 1678])
self.assertEqual(pyth_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(rust_tokenizer.encode(" Hello"), [1, 29871, 15043])
self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])
def test_no_differences_decode(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.decode([869]), ".")
self.assertEqual(rust_tokenizer.decode([869]), ".")
self.assertEqual(pyth_tokenizer.decode([30112, 869]), "ا .")
self.assertEqual(rust_tokenizer.decode([30112, 869]), "ا .")
def test_no_differences_special_tokens(self):
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
self.assertEqual(pyth_tokenizer.encode(""), [1])
self.assertEqual(rust_tokenizer.encode(""), [1])
self.assertEqual(pyth_tokenizer.encode("<s>"), [1, 1])
self.assertEqual(rust_tokenizer.encode("<s>"), [1, 1])
@unittest.skipIf(
os.getenv("RUN_TOKENIZER_INTEGRATION", "0") == "0",
"RUN_TOKENIZER_INTEGRATION=1 to run tokenizer integration tests",
)
def test_integration_test_xnli(self):
import tqdm
pyth_tokenizer = self.tokenizer
rust_tokenizer = self.rust_tokenizer
dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("xnli", "all_languages")
for item in tqdm.tqdm(dataset["train"]):
for string in item["premise"].values():
encoded1 = pyth_tokenizer.encode(string)
encoded2 = rust_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = pyth_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = rust_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
@require_sentencepiece
@require_tokenizers
class CommonSpmIntegrationTests(unittest.TestCase):
"""
A class that regroups important test to make sure that we properly handle the special tokens.
"""
@classmethod
def setUpClass(cls):
tokenizer = LlamaTokenizer(SAMPLE_VOCAB, extra_ids=0, add_bos_token=False, legacy=False)
tokenizer.add_special_tokens({"additional_special_tokens": ["<s>"]})
tokenizer._create_trie(tokenizer.all_special_tokens)
# TODO ArthurZ the above is necessary as addedTokens / intialization sucks. Trie is not correctly created
# So the extra ids are split....
cls.tokenizer = tokenizer
return cls
def test_add_dummy_prefix(self):
# make sure `'▁'` is prepended, and outputs match sp_model's
# `sentencepiece.NormalizerSpec.add_dummy_prefix` attribute
input_ids = self.tokenizer.encode(". Hello")
self.assertEqual(input_ids, [7, 4, 156, 86, 20])
sp_encode = self.tokenizer.sp_model.encode(". Hello")
self.assertEqual(input_ids, sp_encode)
tokens = self.tokenizer.tokenize(". Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
def test_remove_extra_whitespaces(self):
# make sure the extra spaces are eaten. Since the sample vocab does not have
# `______`. sentencepiece.NormalizerSpec.remove_extra_whitespaces attribute is set to False
input_ids = self.tokenizer.encode(" . Hello")
self.assertEqual(input_ids, [7, 4, 156, 86, 20])
sp_encode = self.tokenizer.sp_model.encode(" . Hello")
self.assertEqual(input_ids, sp_encode)
tokens = self.tokenizer.tokenize(" . Hello")
self.assertEqual(tokens, ["", ".", "▁He", "ll", "o"])
# `'▁'` is also a whitespace
input_ids = self.tokenizer.encode("▁He is not")
self.assertEqual(input_ids, [156, 46, 44])
tokens = self.tokenizer.tokenize("▁He is not")
sp_encode = self.tokenizer.sp_model.encode("▁He is not")
self.assertEqual(input_ids, sp_encode)
self.assertEqual(tokens, ["▁He", "▁is", "▁not"]) # no extra space added
input_ids = self.tokenizer.encode("▁He is not<s> ▁He")
self.assertEqual(input_ids, [156, 46, 44, 1, 156])
tokens = self.tokenizer.tokenize("▁He is not<s> ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "<s>", "▁He"]) # spaces are eaten by spm + our strip
# make sure that the output after the extra id is the same as if
# extra_id was not there
input_ids = self.tokenizer.encode("▁He is not ▁He")
self.assertEqual(input_ids, [156, 46, 44, 156])
tokens = self.tokenizer.tokenize("▁He is not ▁He")
self.assertEqual(tokens, ["▁He", "▁is", "▁not", "▁He"]) # spaces are eaten by spm even if not start
def test_character_after_special_token(self):
# Make sure that `tokenizer.tokenize` is similar to
# adding the equivalent special token to the vocab
input_ids = self.tokenizer.encode("Hey <s>I")
self.assertEqual(input_ids, [156, 30, 1, 100])
sp_encode = self.tokenizer.sp_model.encode("Hey .I")
# the last token should be 100
self.assertEqual(input_ids[-1], sp_encode[-1])
tokens = self.tokenizer.tokenize("<s>I")
self.assertEqual(tokens, ["<s>", "I"])
input_ids = self.tokenizer.encode("Hello, <s>,")
self.assertEqual(input_ids, [156, 86, 20, 3, 1, 3])
tokens = self.tokenizer.tokenize("Hello, <s>,")
self.assertEqual(tokens, ["▁He", "ll", "o", ",", "<s>", ","])
def test_special_tokens_strip(self):
input_ids = self.tokenizer.encode(" <s> ,")
self.assertEqual(input_ids, [1, 7, 3])
tokens = self.tokenizer.tokenize(" <s> ,")
# spaces are eaten by rstrip / lstrip + spm sp_model.encode(" ") = []
self.assertEqual(tokens, ["<s>", "", ","])
input_ids = self.tokenizer.encode("No <s> ▁He")
self.assertEqual(input_ids, [284, 1, 156])
tokens = self.tokenizer.tokenize("No <s> ▁He")
self.assertEqual(tokens, ["▁No", "<s>", "▁He"]) # spaces are eaten by rstrip / lstrip