mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
475 lines
18 KiB
Python
475 lines
18 KiB
Python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch PerceptionLM model."""
|
|
|
|
import unittest
|
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import (
|
|
AutoProcessor,
|
|
PerceptionLMConfig,
|
|
PerceptionLMForConditionalGeneration,
|
|
PerceptionLMModel,
|
|
is_torch_available,
|
|
)
|
|
from transformers.testing_utils import (
|
|
cleanup,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
class PerceptionLMVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
image_token_id=0,
|
|
video_token_id=2,
|
|
seq_length=7,
|
|
tie_word_embeddings=True,
|
|
projector_pooling_ratio=1,
|
|
text_config={
|
|
"model_type": "llama",
|
|
"seq_length": 7,
|
|
"is_training": True,
|
|
"use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"hidden_act": "gelu",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 512,
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 1,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"architecture": "vit_pe_core_large_patch14_336",
|
|
"model_args": {
|
|
"embed_dim": 64,
|
|
"img_size": (14, 14),
|
|
"depth": 2,
|
|
"global_pool": "",
|
|
"use_post_transformer_norm": False,
|
|
"init_values": 0.1,
|
|
"ref_feat_shape": (1, 1),
|
|
},
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.image_token_id = image_token_id
|
|
self.video_token_id = video_token_id
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.pad_token_id = text_config["pad_token_id"]
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
self.tie_word_embeddings = tie_word_embeddings
|
|
|
|
self.batch_size = 3
|
|
self.num_tiles = 1
|
|
self.num_frames = 1
|
|
self.num_channels = 3
|
|
self.image_size = self.vision_config["model_args"]["img_size"][0]
|
|
self.num_image_tokens = (self.vision_config["model_args"]["img_size"][0] // 14) ** 2
|
|
self.num_video_tokens = (self.vision_config["model_args"]["img_size"][0] // 14) ** 2
|
|
self.seq_length = seq_length + self.num_image_tokens
|
|
self.encoder_seq_length = self.seq_length
|
|
|
|
def get_config(self):
|
|
return PerceptionLMConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
vision_use_cls_token=True,
|
|
image_token_id=self.image_token_id,
|
|
video_token_id=self.video_token_id,
|
|
tie_word_embeddings=self.tie_word_embeddings,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_tiles,
|
|
self.num_channels,
|
|
self.vision_config["model_args"]["img_size"][0],
|
|
self.vision_config["model_args"]["img_size"][1],
|
|
]
|
|
)
|
|
pixel_values_videos = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_frames,
|
|
self.num_channels,
|
|
self.vision_config["model_args"]["img_size"][0],
|
|
self.vision_config["model_args"]["img_size"][1],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, pixel_values_videos
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, pixel_values, pixel_values_videos = self.prepare_config_and_inputs()
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device)
|
|
input_ids[input_ids == config.image_token_id] = self.pad_token_id
|
|
input_ids[input_ids == config.video_token_id] = self.pad_token_id
|
|
input_ids[:, : self.num_image_tokens] = config.image_token_id
|
|
input_ids[:, self.num_image_tokens : self.num_video_tokens + self.num_image_tokens] = config.video_token_id
|
|
|
|
inputs_dict = {
|
|
"pixel_values": pixel_values,
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class PerceptionLMForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `PerceptionLMForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(
|
|
PerceptionLMModel,
|
|
PerceptionLMForConditionalGeneration,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
test_pruning = False
|
|
test_head_masking = False
|
|
_is_composite = True
|
|
|
|
def setUp(self):
|
|
self.model_tester = PerceptionLMVisionText2TextModelTester(self)
|
|
common_properties = [
|
|
"image_token_id",
|
|
"video_token_id",
|
|
]
|
|
self.config_tester = ConfigTester(
|
|
self,
|
|
config_class=PerceptionLMConfig,
|
|
has_text_modality=False,
|
|
common_properties=common_properties,
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
def test_inputs_embeds(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
del inputs["pixel_values_videos"]
|
|
|
|
wte = model.get_input_embeddings()
|
|
inputs["inputs_embeds"] = wte(input_ids)
|
|
|
|
with torch.no_grad():
|
|
model(**inputs)
|
|
|
|
# overwrite inputs_embeds tests because we need to delete "pixel values" for LVLMs
|
|
# while some other models require pixel_values to be present
|
|
def test_inputs_embeds_matches_input_ids(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
input_ids = inputs["input_ids"]
|
|
del inputs["input_ids"]
|
|
del inputs["pixel_values"]
|
|
del inputs["pixel_values_videos"]
|
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids)
|
|
|
|
with torch.no_grad():
|
|
out_ids = model(input_ids=input_ids, **inputs)[0]
|
|
out_embeds = model(inputs_embeds=inputs_embeds, **inputs)[0]
|
|
torch.testing.assert_close(out_embeds, out_ids)
|
|
|
|
def test_mismatching_num_image_tokens(self):
|
|
"""
|
|
Tests that VLMs through an error with explicit message saying what is wrong
|
|
when number of images doesn't match number of image tokens in the text.
|
|
Also we need to test multi-image cases when one prompr has multiple image tokens.
|
|
"""
|
|
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
if model_class == PerceptionLMModel:
|
|
continue
|
|
model = model_class(config).to(torch_device)
|
|
_ = model(**input_dict) # successful forward with no modifications
|
|
|
|
# remove one image but leave the image token in text
|
|
input_dict["pixel_values"] = input_dict["pixel_values"][-1:, ...]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**input_dict)
|
|
|
|
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
|
|
input_ids = input_dict["input_ids"][:1]
|
|
pixel_values = input_dict["pixel_values"][:1]
|
|
input_ids = torch.cat([input_ids, input_ids], dim=0)
|
|
|
|
# one image and two image tokens raise an error
|
|
with self.assertRaises(ValueError):
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
# two images and two image tokens don't raise an error
|
|
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
|
|
_ = model(input_ids=input_ids, pixel_values=pixel_values)
|
|
|
|
def test_training(self):
|
|
self.all_model_classes = (PerceptionLMForConditionalGeneration,) if is_torch_available() else ()
|
|
super().test_training()
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
self.all_model_classes = (PerceptionLMForConditionalGeneration,) if is_torch_available() else ()
|
|
super().test_training_gradient_checkpointing()
|
|
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
self.all_model_classes = (PerceptionLMForConditionalGeneration,) if is_torch_available() else ()
|
|
super().test_training_gradient_checkpointing_use_reentrant()
|
|
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
self.all_model_classes = (PerceptionLMForConditionalGeneration,) if is_torch_available() else ()
|
|
super().test_training_gradient_checkpointing_use_reentrant_false()
|
|
|
|
@unittest.skip(reason="Timm Eva (PE) weights cannot be fully constructed in _init_weights")
|
|
def test_can_init_all_missing_weights(self):
|
|
pass
|
|
|
|
@unittest.skip(reason="Timm Eva (PE) weights cannot be fully constructed in _init_weights")
|
|
def test_initialization(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="PE/TIMM's attention implementation is self configured and won't raise ValueError on global attention implementation."
|
|
)
|
|
def test_flash_attn_2_can_dispatch_composite_models(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"VLMs need lots of steps to prepare images/mask correctly to get pad-free inputs. Can be tested as part of LLM test"
|
|
)
|
|
def test_flash_attention_2_padding_matches_padding_free_with_position_ids(self):
|
|
pass
|
|
|
|
@unittest.skip("ViT PE cannot be tested with meta device")
|
|
def test_can_be_initialized_on_meta(self):
|
|
pass
|
|
|
|
@unittest.skip("ViT PE cannot be tested with meta device")
|
|
def test_can_load_with_meta_device_context_manager(self):
|
|
pass
|
|
|
|
@unittest.skip("Specifying both inputs_embeds and pixel_values are not supported for PerceptionLM")
|
|
def test_generate_from_inputs_embeds_0_greedy(self):
|
|
pass
|
|
|
|
@unittest.skip("Specifying both inputs_embeds and pixel_values are not supported for PerceptionLM")
|
|
def test_generate_from_inputs_embeds_1_beam_search(self):
|
|
pass
|
|
|
|
@unittest.skip("Specifying both inputs_embeds and pixel_values are not supported for PerceptionLM")
|
|
def test_generate_from_inputs_embeds_with_static_cache(self):
|
|
pass
|
|
|
|
## Skip flash attention releated tests below
|
|
## correct configuration:
|
|
## from_pretrained(model_id, attn_implementation={"text_config": "flash_attention_2", "vision_config": "eager"}
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_eager_matches_fa2_generate(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_flash_attn_2_fp32_ln(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_flash_attn_2_from_config(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_eager_matches_sdpa_generate_with_dynamic_cache(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_flash_attn_2_inference_equivalence_right_padding(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_eager_matches_sdpa_generate(self):
|
|
pass
|
|
|
|
@unittest.skip("Flash attn test is not configured correctly as we need to configure vision/timm model to 'eager'.")
|
|
def test_flash_attn_2_inference_equivalence(self):
|
|
pass
|
|
|
|
|
|
TEST_MODEL_PATH = "shumingh/plm_1b_hf"
|
|
|
|
|
|
@require_torch
|
|
class PerceptionLMForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = AutoProcessor.from_pretrained(TEST_MODEL_PATH)
|
|
self.image_file = hf_hub_download(
|
|
repo_id="shumingh/perception_lm_test_images",
|
|
filename="14496_0.PNG",
|
|
repo_type="dataset",
|
|
)
|
|
self.video_file = hf_hub_download(
|
|
repo_id="shumingh/perception_lm_test_videos",
|
|
filename="GUWR5TyiY-M_000012_000022.mp4",
|
|
repo_type="dataset",
|
|
)
|
|
self.conversation1 = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "image", "url": self.image_file},
|
|
{"type": "text", "text": "Describe the bar plot in the image."},
|
|
],
|
|
}
|
|
]
|
|
self.conversation2 = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "video",
|
|
"url": self.video_file,
|
|
},
|
|
{"type": "text", "text": "Can you describe the video in detail?"},
|
|
],
|
|
}
|
|
]
|
|
|
|
def tearDown(self):
|
|
cleanup(torch_device, gc_collect=True)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
model = PerceptionLMForConditionalGeneration.from_pretrained(
|
|
TEST_MODEL_PATH, load_in_4bit=True, cache_dir="./"
|
|
)
|
|
|
|
inputs = self.processor.apply_chat_template(
|
|
[self.conversation1],
|
|
num_frames=32,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
video_load_backend="decord",
|
|
padding=True,
|
|
padding_side="left",
|
|
).to(torch_device)
|
|
|
|
generate_ids = model.generate(**inputs, max_new_tokens=18)
|
|
input_length = inputs["input_ids"].shape[1]
|
|
generate_ids_without_inputs = generate_ids[:, input_length:]
|
|
|
|
EXPECTED_DECODED_TEXT = "The bar plot displays the values of four categories: step, horror, mood, and lumber" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(generate_ids_without_inputs[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_batched(self):
|
|
model = PerceptionLMForConditionalGeneration.from_pretrained(TEST_MODEL_PATH, load_in_4bit=True)
|
|
processor = AutoProcessor.from_pretrained(TEST_MODEL_PATH)
|
|
inputs = processor.apply_chat_template(
|
|
[self.conversation1, self.conversation2],
|
|
num_frames=32,
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_dict=True,
|
|
return_tensors="pt",
|
|
video_load_backend="decord",
|
|
padding=True,
|
|
padding_side="left",
|
|
).to(torch_device)
|
|
|
|
generate_ids = model.generate(**inputs, max_new_tokens=18)
|
|
input_length = inputs["input_ids"].shape[1]
|
|
generate_ids_without_inputs = generate_ids[:, input_length:]
|
|
|
|
EXPECTED_DECODED_TEXT = ['The bar plot displays the values of four categories: step, horror, mood, and lumber', 'The video shows a group of people in green shirts and white shorts performing a jump rope routine'] # fmt: skip
|
|
|
|
self.assertEqual(
|
|
processor.batch_decode(generate_ids_without_inputs, skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_generation_no_images(self):
|
|
# model_id = "facebook/Perception-LM-1B"
|
|
model = PerceptionLMForConditionalGeneration.from_pretrained(TEST_MODEL_PATH, load_in_4bit=True)
|
|
processor = AutoProcessor.from_pretrained(TEST_MODEL_PATH)
|
|
|
|
# Prepare inputs with no images
|
|
inputs = processor(text="Hello, I am", return_tensors="pt").to(torch_device)
|
|
|
|
# Make sure that `generate` works
|
|
_ = model.generate(**inputs, max_new_tokens=20)
|