mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00

* Initial commit with template code generated by transformers-cli
* Multiple additions to SuperGlue implementation :
- Added the SuperGlueConfig
- Added the SuperGlueModel and its implementation
- Added basic weight conversion script
- Added new ImageMatchingOutput dataclass
* Few changes for SuperGlue
* Multiple changes :
- Added keypoint detection config to SuperGlueConfig
- Completed convert_superglue_to_pytorch and succesfully run inference
* Reverted unintentional change
* Multiple changes :
- Added SuperGlue to a bunch of places
- Divided SuperGlue into SuperGlueForImageMatching and SuperGlueModel
- Added testing images
* Moved things in init files
* Added docs (to be finished depending on the final implementation)
* Added necessary imports and some doc
* Removed unnecessary import
* Fixed make fix-copies bug and ran it
* Deleted SuperGlueModel
Fixed convert script
* Added SuperGlueImageProcessor
* Changed SuperGlue to support batching pairs of images and modified ImageMatchingOutput in consequences
* Changed convert_superglue_to_hf.py script to experiment different ways of reading an image and seeing its impact on performances
* Added initial tests for SuperGlueImageProcessor
* Added AutoModelForImageMatching in missing places and tests
* Fixed keypoint_detector_output instructions
* Fix style
* Adapted to latest main changes
* Added integration test
* Fixed bugs to pass tests
* Added keypoints returned by keypoint detector in the output of SuperGlue
* Added doc to SuperGlue
* SuperGlue returning all attention and hidden states for a fixed number of keypoints
* Make style
* Changed SuperGlueImageProcessor tests
* Revert "SuperGlue returning all attention and hidden states for a fixed number of keypoints"
Changed tests accordingly
This reverts commit 5b3b669c
* Added back hidden_states and attentions masked outputs with tests
* Renamed ImageMatching occurences into KeypointMatching
* Changed SuperGlueImageProcessor to raise error when batch_size is not even
* Added docs and clarity to hidden state and attention grouping function
* Fixed some code and done refactoring
* Fixed typo in SuperPoint output doc
* Fixed some of the formatting and variable naming problems
* Removed useless function call
* Removed AutoModelForKeypointMatching
* Fixed SuperGlueImageProcessor to only accept paris of images
* Added more fixes to SuperGlueImageProcessor
* Simplified the batching of attention and hidden states
* Simplified stack functions
* Moved attention instructions into class
* Removed unused do_batch_norm argument
* Moved weight initialization to the proper place
* Replaced deepcopy for instantiation
* Fixed small bug
* Changed from stevenbucaille to magic-leap repo
* Renamed London Bridge images to Tower Bridge
* Fixed formatting
* Renamed remaining "london" to "tower"
* Apply suggestions from code review
Small changes in the docs
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Added AutoModelForKeypointMatching
* Changed images used in example
* Several changes to image_processing_superglue and style
* Fixed resample type hint
* Changed SuperGlueImageProcessor and added test case for list of 2 images
* Changed list_of_tuples implementation
* Fix in dummy objects
* Added normalize_keypoint, log_sinkhorn_iterations and log_optimal_transport docstring
* Added missing docstring
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Apply suggestions from code review
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* Moved forward block at bottom
* Added docstring to forward method
* Added docstring to match_image_pair method
* Changed test_model_common_attributes to test_model_get_set_embeddings test method signature
* Removed AutoModelForKeypointMatching
* Removed image fixtures and added load_dataset
* Added padding of images in SuperGlueImageProcessor
* Cleaned up convert_superglue_to_hf script
* Added missing docs and fixed unused argument
* Fixed SuperGlueImageProcessor tests
* Transposed all hidden states from SuperGlue to reflect the standard (..., seq_len, feature_dim) shape
* Added SuperGlueForKeypointMatching back to modeling_auto
* Fixed image processor padding test
* Changed SuperGlue docs
* changes:
- Abstraction to batch, concat and stack of inconsistent tensors
- Changed conv1d's to linears to match standard attention implementations
- Renamed all tensors to be tensor0 and not tensor_0 and be consistent
- Changed match image pair to run keypoint detection on all image first, create batching tensors and then filling these tensors matches after matches
- Various changes in docs, etc
* Changes to SuperGlueImageProcessor:
- Reworked the input image pairs checking function and added tests accordingly
- Added Copied from statements
- Added do_grayscale tag (also for SuperPointImageProcessor)
- Misc changes for better code
* Formatting changes
* Reverted conv1d to linear conversion because of numerical differences
* fix: changed some code to be more straightforward (e.g. filtering keypoints) and converted plot from opencv to matplotlib
* fix: removed unnecessary test
* chore: removed commented code and added back hidden states transpositions
* chore: changed from "inconsistent" to "ragged" function names as suggested
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: applied suggestions
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* docs: updated to display matched output
* chore: applied suggestion for check_image_pairs_input function
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
* chore: changed check_image_pairs_input function name to validate_and_format_image_pairs and used validate_preprocess_arguments function
* tests: simplified tests for image input format and shapes
* feat: converted SuperGlue's use of Conv1d with kernel_size of 1 with Linear layers. Changed tests and conversion script accordingly
* feat: several changes to address comments
Conversion script:
- Reverted fuse batchnorm to linear conversion
- Changed all 'nn.Module' to respective SuperGlue models
- Changed conversion script to use regex mapping and match other recent scripts
Modeling SuperGlue:
- Added batching with mask and padding to attention
- Removed unnecessary concat, stack and batch ragged pairs functions
- Reverted batchnorm layer
- Renamed query, key, value and merge layers into q, k, v, out proj
- Removed Union of different Module into nn.Module in _init_weights method typehint
- Changed several method's signature to combine image0 and image1 inputs with appropriate doc changes
- Updated SuperGlue's doc with torch.no_grad()
Updated test to reflect changes in SuperGlue model
* refactor: changed validate_and_format_image_pairs function with clarity
* refactor: changed from one SuperGlueMLP class to a list of SuperGlueMLP class
* fix: fixed forgotten init weight change from last commit
* fix: fixed rebase mistake
* fix: removed leftover commented code
* fix: added typehint and changed some of arguments default values
* fix: fixed attribute default values for SuperGlueConfig
* feat: added SuperGlueImageProcessor post process keypoint matching method with tests
* fix: fixed SuperGlue attention and hidden state tuples aggregation
* chore: fixed mask optionality and reordered tensor reshapes to be cleaner
* chore: fixed docs and error message returned in validate_and_format_image_pairs function
* fix: fixed returned keypoints to be the ones that SuperPoint returns
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue
* fix: fixed check on number of image sizes for post process compared to the pairs in outputs of SuperGlue (bis)
* fix: Changed SuperGlueMultiLayerPerceptron instantiation to avoid if statement
* fix: Changed convert_superglue_to_hf script to reflect latest SuperGlue changes and got rid of nn.Modules
* WIP: implement Attention from an existing class (like BERT)
* docs: Changed docs to include more appealing matching plot
* WIP: Implement Attention
* chore: minor typehint change
* chore: changed convert superglue script by removing all classes and apply conv to linear conversion in state dict + rearrange keys to comply with changes in model's layers organisation
* Revert "Fixed typo in SuperPoint output doc"
This reverts commit 2120390e82
.
* chore: added comments in SuperGlueImageProcessor
* chore: changed SuperGlue organization HF repo to magic-leap-community
* [run-slow] refactor: small change in layer instantiation
* [run-slow] chore: replaced remaining stevenbucaille org to magic-leap-community
* [run-slow] chore: make style
* chore: update image matching fixture dataset HF repository
* [run-slow] superglue
* tests: overwriting test_batching_equivalence
* [run-slow] superglue
* tests: changed test to cope with value changing depending on cuda version
* [run-slow] superglue
* tests: changed matching_threshold value
* [run-slow] superglue
* [run-slow] superglue
* tests: changed tests for integration
* [run-slow] superglue
* fix: Changed tensor view and permutations to match original implementation results
* fix: updated convert script and integration test to include last change in model
* fix: increase tolerance for CUDA variances
* Apply suggestions from code review
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
* [run-slow] superglue
* chore: removed blank whitespaces
* [run-slow] superglue
* Revert SuperPoint image processor accident changes
* [run-slow] superglue
* refactor: reverted copy from BERT class
* tests: lower the tolerance in integration tests for SuperGlue
* [run-slow] superglue
* chore: set do_grayscale to False in SuperPoint and SuperGlue image processors
* [run-slow] superglue
* fix: fixed imports in SuperGlue files
* chore: changed do_grayscale SuperGlueImageProcessing default value to True
* docs: added typehint to post_process_keypoint_matching method in SuperGlueImageProcessor
* fix: set matching_threshold default value to 0.0 instead of 0.2
* feat: added matching_threshold to post_process_keypoint_matching method
* docs: update superglue.md to include matching_threshold parameter
* docs: updated SuperGlueConfig docstring for matching_threshold default value
* refactor: removed unnecessary parameters in SuperGlueConfig
* fix: changed from matching_threshold to threshold
* fix: re-revert changes to make SuperGlue attention classes copies of BERT
* [run-slow] superglue
* fix: added missing device argument in post_processing method
* [run-slow] superglue
* fix: add matches different from -1 to compute valid matches in post_process_keypoint_matching (and docstring)
* fix: add device to image_sizes tensor instantiation
* tests: added checks on do_grayscale test
* chore: reordered and added Optional typehint to KeypointMatchingOutput
* LightGluePR suggestions:
- use `post_process_keypoint_matching` as default docs example
- add `post_process_keypoint_matching` in autodoc
- add `SuperPointConfig` import under TYPE_CHECKING condition
- format SuperGlueConfig docstring
- add device in convert_superglue_to_hf
- Fix typo
- Fix KeypointMatchingOutput docstring
- Removed unnecessary line
- Added missing SuperGlueConfig in __init__ methods
* LightGluePR suggestions:
- use batching to get keypoint detection
* refactor: processing images done in 1 for loop instead of 4
* fix: use @ instead of torch.einsum for scores computation
* style: added #fmt skip to long tensor values
* refactor: rollbacked validate_and_format_image_pairs valid and invalid case to more simple ones
* refactor: prepare_imgs
* refactor: simplified `validate_and_format_image_pairs`
* docs: fixed doc
---------
Co-authored-by: steven <steven.bucaillle@gmail.com>
Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
Co-authored-by: Steven Bucaille <steven.bucaille@buawei.com>
Co-authored-by: Pavel Iakubovskii <qubvel@gmail.com>
1015 lines
29 KiB
YAML
1015 lines
29 KiB
YAML
- sections:
|
|
- local: index
|
|
title: 🤗 Transformers
|
|
- local: quicktour
|
|
title: Quick tour
|
|
- local: installation
|
|
title: Installation
|
|
- local: add_new_model
|
|
title: Adding a new model to `transformers`
|
|
title: Get started
|
|
- sections:
|
|
- local: pipeline_tutorial
|
|
title: Run inference with pipelines
|
|
- local: autoclass_tutorial
|
|
title: Write portable code with AutoClass
|
|
- local: preprocessing
|
|
title: Preprocess data
|
|
- local: training
|
|
title: Fine-tune a pretrained model
|
|
- local: run_scripts
|
|
title: Train with a script
|
|
- local: accelerate
|
|
title: Set up distributed training with 🤗 Accelerate
|
|
- local: peft
|
|
title: Load and train adapters with 🤗 PEFT
|
|
- local: model_sharing
|
|
title: Share your model
|
|
- local: agents
|
|
title: Agents 101
|
|
- local: agents_advanced
|
|
title: Agents, supercharged - Multi-agents, External tools, and more
|
|
- local: llm_tutorial
|
|
title: Generation with LLMs
|
|
- local: conversations
|
|
title: Chatting with Transformers
|
|
title: Tutorials
|
|
- sections:
|
|
- isExpanded: false
|
|
sections:
|
|
- local: tasks/sequence_classification
|
|
title: Text classification
|
|
- local: tasks/token_classification
|
|
title: Token classification
|
|
- local: tasks/question_answering
|
|
title: Question answering
|
|
- local: tasks/language_modeling
|
|
title: Causal language modeling
|
|
- local: tasks/masked_language_modeling
|
|
title: Masked language modeling
|
|
- local: tasks/translation
|
|
title: Translation
|
|
- local: tasks/summarization
|
|
title: Summarization
|
|
- local: tasks/multiple_choice
|
|
title: Multiple choice
|
|
title: Natural Language Processing
|
|
- isExpanded: false
|
|
sections:
|
|
- local: tasks/audio_classification
|
|
title: Audio classification
|
|
- local: tasks/asr
|
|
title: Automatic speech recognition
|
|
title: Audio
|
|
- isExpanded: false
|
|
sections:
|
|
- local: tasks/image_classification
|
|
title: Image classification
|
|
- local: tasks/semantic_segmentation
|
|
title: Image segmentation
|
|
- local: tasks/video_classification
|
|
title: Video classification
|
|
- local: tasks/object_detection
|
|
title: Object detection
|
|
- local: tasks/zero_shot_object_detection
|
|
title: Zero-shot object detection
|
|
- local: tasks/zero_shot_image_classification
|
|
title: Zero-shot image classification
|
|
- local: tasks/monocular_depth_estimation
|
|
title: Depth estimation
|
|
- local: tasks/image_to_image
|
|
title: Image-to-Image
|
|
- local: tasks/image_feature_extraction
|
|
title: Image Feature Extraction
|
|
- local: tasks/mask_generation
|
|
title: Mask Generation
|
|
- local: tasks/keypoint_detection
|
|
title: Keypoint Detection
|
|
- local: tasks/knowledge_distillation_for_image_classification
|
|
title: Knowledge Distillation for Computer Vision
|
|
title: Computer Vision
|
|
- isExpanded: false
|
|
sections:
|
|
- local: tasks/image_captioning
|
|
title: Image captioning
|
|
- local: tasks/document_question_answering
|
|
title: Document Question Answering
|
|
- local: tasks/visual_question_answering
|
|
title: Visual Question Answering
|
|
- local: tasks/text-to-speech
|
|
title: Text to speech
|
|
- local: tasks/image_text_to_text
|
|
title: Image-text-to-text
|
|
- local: tasks/video_text_to_text
|
|
title: Video-text-to-text
|
|
title: Multimodal
|
|
- isExpanded: false
|
|
sections:
|
|
- local: generation_strategies
|
|
title: Customize the generation strategy
|
|
- local: kv_cache
|
|
title: Best Practices for Generation with Cache
|
|
title: Generation
|
|
- isExpanded: false
|
|
sections:
|
|
- local: tasks/idefics
|
|
title: Image tasks with IDEFICS
|
|
- local: tasks/prompting
|
|
title: LLM prompting guide
|
|
title: Prompting
|
|
title: Task Guides
|
|
- sections:
|
|
- local: fast_tokenizers
|
|
title: Use fast tokenizers from 🤗 Tokenizers
|
|
- local: multilingual
|
|
title: Run inference with multilingual models
|
|
- local: create_a_model
|
|
title: Use model-specific APIs
|
|
- local: custom_models
|
|
title: Share a custom model
|
|
- local: chat_templating
|
|
title: Chat templates
|
|
- local: trainer
|
|
title: Trainer
|
|
- local: sagemaker
|
|
title: Run training on Amazon SageMaker
|
|
- local: serialization
|
|
title: Export to ONNX
|
|
- local: tflite
|
|
title: Export to TFLite
|
|
- local: torchscript
|
|
title: Export to TorchScript
|
|
- local: benchmarks
|
|
title: Benchmarks
|
|
- local: notebooks
|
|
title: Notebooks with examples
|
|
- local: community
|
|
title: Community resources
|
|
- local: troubleshooting
|
|
title: Troubleshoot
|
|
- local: gguf
|
|
title: Interoperability with GGUF files
|
|
- local: tiktoken
|
|
title: Interoperability with TikToken files
|
|
- local: modular_transformers
|
|
title: Modularity in `transformers`
|
|
- local: how_to_hack_models
|
|
title: Model Hacking (overwriting a class to your usage)
|
|
title: Developer guides
|
|
- sections:
|
|
- local: quantization/overview
|
|
title: Getting started
|
|
- local: quantization/bitsandbytes
|
|
title: bitsandbytes
|
|
- local: quantization/gptq
|
|
title: GPTQ
|
|
- local: quantization/awq
|
|
title: AWQ
|
|
- local: quantization/aqlm
|
|
title: AQLM
|
|
- local: quantization/vptq
|
|
title: VPTQ
|
|
- local: quantization/quanto
|
|
title: Quanto
|
|
- local: quantization/eetq
|
|
title: EETQ
|
|
- local: quantization/higgs
|
|
title: HIGGS
|
|
- local: quantization/hqq
|
|
title: HQQ
|
|
- local: quantization/fbgemm_fp8
|
|
title: FBGEMM_FP8
|
|
- local: quantization/optimum
|
|
title: Optimum
|
|
- local: quantization/torchao
|
|
title: TorchAO
|
|
- local: quantization/bitnet
|
|
title: BitNet
|
|
- local: quantization/compressed_tensors
|
|
title: compressed-tensors
|
|
- local: quantization/contribute
|
|
title: Contribute new quantization method
|
|
title: Quantization Methods
|
|
- sections:
|
|
- local: performance
|
|
title: Overview
|
|
- local: llm_optims
|
|
title: LLM inference optimization
|
|
- sections:
|
|
- local: perf_train_gpu_one
|
|
title: Methods and tools for efficient training on a single GPU
|
|
- local: perf_train_gpu_many
|
|
title: Multiple GPUs and parallelism
|
|
- local: fsdp
|
|
title: Fully Sharded Data Parallel
|
|
- local: deepspeed
|
|
title: DeepSpeed
|
|
- local: perf_train_cpu
|
|
title: Efficient training on CPU
|
|
- local: perf_train_cpu_many
|
|
title: Distributed CPU training
|
|
- local: perf_train_tpu_tf
|
|
title: Training on TPU with TensorFlow
|
|
- local: perf_train_special
|
|
title: PyTorch training on Apple silicon
|
|
- local: perf_hardware
|
|
title: Custom hardware for training
|
|
- local: hpo_train
|
|
title: Hyperparameter Search using Trainer API
|
|
title: Efficient training techniques
|
|
- sections:
|
|
- local: perf_infer_cpu
|
|
title: CPU inference
|
|
- local: perf_infer_gpu_one
|
|
title: GPU inference
|
|
- local: perf_infer_gpu_multi
|
|
title: Multi-GPU inference
|
|
title: Optimizing inference
|
|
- local: big_models
|
|
title: Instantiate a big model
|
|
- local: debugging
|
|
title: Debugging
|
|
- local: tf_xla
|
|
title: XLA Integration for TensorFlow Models
|
|
- local: perf_torch_compile
|
|
title: Optimize inference using `torch.compile()`
|
|
title: Performance and scalability
|
|
- sections:
|
|
- local: contributing
|
|
title: How to contribute to 🤗 Transformers?
|
|
- local: add_new_model
|
|
title: How to add a model to 🤗 Transformers?
|
|
- local: add_new_pipeline
|
|
title: How to add a pipeline to 🤗 Transformers?
|
|
- local: testing
|
|
title: Testing
|
|
- local: pr_checks
|
|
title: Checks on a Pull Request
|
|
title: Contribute
|
|
- sections:
|
|
- local: philosophy
|
|
title: Philosophy
|
|
- local: glossary
|
|
title: Glossary
|
|
- local: task_summary
|
|
title: What 🤗 Transformers can do
|
|
- local: tasks_explained
|
|
title: How 🤗 Transformers solve tasks
|
|
- local: model_summary
|
|
title: The Transformer model family
|
|
- local: tokenizer_summary
|
|
title: Summary of the tokenizers
|
|
- local: attention
|
|
title: Attention mechanisms
|
|
- local: pad_truncation
|
|
title: Padding and truncation
|
|
- local: bertology
|
|
title: BERTology
|
|
- local: perplexity
|
|
title: Perplexity of fixed-length models
|
|
- local: pipeline_webserver
|
|
title: Pipelines for webserver inference
|
|
- local: model_memory_anatomy
|
|
title: Model training anatomy
|
|
- local: llm_tutorial_optimization
|
|
title: Getting the most out of LLMs
|
|
title: Conceptual guides
|
|
- sections:
|
|
- sections:
|
|
- local: main_classes/agent
|
|
title: Agents and Tools
|
|
- local: model_doc/auto
|
|
title: Auto Classes
|
|
- local: main_classes/backbones
|
|
title: Backbones
|
|
- local: main_classes/callback
|
|
title: Callbacks
|
|
- local: main_classes/configuration
|
|
title: Configuration
|
|
- local: main_classes/data_collator
|
|
title: Data Collator
|
|
- local: main_classes/keras_callbacks
|
|
title: Keras callbacks
|
|
- local: main_classes/logging
|
|
title: Logging
|
|
- local: main_classes/model
|
|
title: Models
|
|
- local: main_classes/text_generation
|
|
title: Text Generation
|
|
- local: main_classes/onnx
|
|
title: ONNX
|
|
- local: main_classes/optimizer_schedules
|
|
title: Optimization
|
|
- local: main_classes/output
|
|
title: Model outputs
|
|
- local: main_classes/pipelines
|
|
title: Pipelines
|
|
- local: main_classes/processors
|
|
title: Processors
|
|
- local: main_classes/quantization
|
|
title: Quantization
|
|
- local: main_classes/tokenizer
|
|
title: Tokenizer
|
|
- local: main_classes/trainer
|
|
title: Trainer
|
|
- local: main_classes/deepspeed
|
|
title: DeepSpeed
|
|
- local: main_classes/executorch
|
|
title: ExecuTorch
|
|
- local: main_classes/feature_extractor
|
|
title: Feature Extractor
|
|
- local: main_classes/image_processor
|
|
title: Image Processor
|
|
title: Main Classes
|
|
- sections:
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/albert
|
|
title: ALBERT
|
|
- local: model_doc/bamba
|
|
title: Bamba
|
|
- local: model_doc/bart
|
|
title: BART
|
|
- local: model_doc/barthez
|
|
title: BARThez
|
|
- local: model_doc/bartpho
|
|
title: BARTpho
|
|
- local: model_doc/bert
|
|
title: BERT
|
|
- local: model_doc/bert-generation
|
|
title: BertGeneration
|
|
- local: model_doc/bert-japanese
|
|
title: BertJapanese
|
|
- local: model_doc/bertweet
|
|
title: Bertweet
|
|
- local: model_doc/big_bird
|
|
title: BigBird
|
|
- local: model_doc/bigbird_pegasus
|
|
title: BigBirdPegasus
|
|
- local: model_doc/biogpt
|
|
title: BioGpt
|
|
- local: model_doc/blenderbot
|
|
title: Blenderbot
|
|
- local: model_doc/blenderbot-small
|
|
title: Blenderbot Small
|
|
- local: model_doc/bloom
|
|
title: BLOOM
|
|
- local: model_doc/bort
|
|
title: BORT
|
|
- local: model_doc/byt5
|
|
title: ByT5
|
|
- local: model_doc/camembert
|
|
title: CamemBERT
|
|
- local: model_doc/canine
|
|
title: CANINE
|
|
- local: model_doc/codegen
|
|
title: CodeGen
|
|
- local: model_doc/code_llama
|
|
title: CodeLlama
|
|
- local: model_doc/cohere
|
|
title: Cohere
|
|
- local: model_doc/cohere2
|
|
title: Cohere2
|
|
- local: model_doc/convbert
|
|
title: ConvBERT
|
|
- local: model_doc/cpm
|
|
title: CPM
|
|
- local: model_doc/cpmant
|
|
title: CPMANT
|
|
- local: model_doc/ctrl
|
|
title: CTRL
|
|
- local: model_doc/dbrx
|
|
title: DBRX
|
|
- local: model_doc/deberta
|
|
title: DeBERTa
|
|
- local: model_doc/deberta-v2
|
|
title: DeBERTa-v2
|
|
- local: model_doc/dialogpt
|
|
title: DialoGPT
|
|
- local: model_doc/diffllama
|
|
title: DiffLlama
|
|
- local: model_doc/distilbert
|
|
title: DistilBERT
|
|
- local: model_doc/dpr
|
|
title: DPR
|
|
- local: model_doc/electra
|
|
title: ELECTRA
|
|
- local: model_doc/encoder-decoder
|
|
title: Encoder Decoder Models
|
|
- local: model_doc/ernie
|
|
title: ERNIE
|
|
- local: model_doc/ernie_m
|
|
title: ErnieM
|
|
- local: model_doc/esm
|
|
title: ESM
|
|
- local: model_doc/falcon
|
|
title: Falcon
|
|
- local: model_doc/falcon3
|
|
title: Falcon3
|
|
- local: model_doc/falcon_mamba
|
|
title: FalconMamba
|
|
- local: model_doc/fastspeech2_conformer
|
|
title: FastSpeech2Conformer
|
|
- local: model_doc/flan-t5
|
|
title: FLAN-T5
|
|
- local: model_doc/flan-ul2
|
|
title: FLAN-UL2
|
|
- local: model_doc/flaubert
|
|
title: FlauBERT
|
|
- local: model_doc/fnet
|
|
title: FNet
|
|
- local: model_doc/fsmt
|
|
title: FSMT
|
|
- local: model_doc/funnel
|
|
title: Funnel Transformer
|
|
- local: model_doc/fuyu
|
|
title: Fuyu
|
|
- local: model_doc/gemma
|
|
title: Gemma
|
|
- local: model_doc/gemma2
|
|
title: Gemma2
|
|
- local: model_doc/glm
|
|
title: GLM
|
|
- local: model_doc/openai-gpt
|
|
title: GPT
|
|
- local: model_doc/gpt_neo
|
|
title: GPT Neo
|
|
- local: model_doc/gpt_neox
|
|
title: GPT NeoX
|
|
- local: model_doc/gpt_neox_japanese
|
|
title: GPT NeoX Japanese
|
|
- local: model_doc/gptj
|
|
title: GPT-J
|
|
- local: model_doc/gpt2
|
|
title: GPT2
|
|
- local: model_doc/gpt_bigcode
|
|
title: GPTBigCode
|
|
- local: model_doc/gptsan-japanese
|
|
title: GPTSAN Japanese
|
|
- local: model_doc/gpt-sw3
|
|
title: GPTSw3
|
|
- local: model_doc/granite
|
|
title: Granite
|
|
- local: model_doc/granitemoe
|
|
title: GraniteMoe
|
|
- local: model_doc/helium
|
|
title: Helium
|
|
- local: model_doc/herbert
|
|
title: HerBERT
|
|
- local: model_doc/ibert
|
|
title: I-BERT
|
|
- local: model_doc/jamba
|
|
title: Jamba
|
|
- local: model_doc/jetmoe
|
|
title: JetMoe
|
|
- local: model_doc/jukebox
|
|
title: Jukebox
|
|
- local: model_doc/led
|
|
title: LED
|
|
- local: model_doc/llama
|
|
title: LLaMA
|
|
- local: model_doc/llama2
|
|
title: Llama2
|
|
- local: model_doc/llama3
|
|
title: Llama3
|
|
- local: model_doc/longformer
|
|
title: Longformer
|
|
- local: model_doc/longt5
|
|
title: LongT5
|
|
- local: model_doc/luke
|
|
title: LUKE
|
|
- local: model_doc/m2m_100
|
|
title: M2M100
|
|
- local: model_doc/madlad-400
|
|
title: MADLAD-400
|
|
- local: model_doc/mamba
|
|
title: Mamba
|
|
- local: model_doc/mamba2
|
|
title: mamba2
|
|
- local: model_doc/marian
|
|
title: MarianMT
|
|
- local: model_doc/markuplm
|
|
title: MarkupLM
|
|
- local: model_doc/mbart
|
|
title: MBart and MBart-50
|
|
- local: model_doc/mega
|
|
title: MEGA
|
|
- local: model_doc/megatron-bert
|
|
title: MegatronBERT
|
|
- local: model_doc/megatron_gpt2
|
|
title: MegatronGPT2
|
|
- local: model_doc/mistral
|
|
title: Mistral
|
|
- local: model_doc/mixtral
|
|
title: Mixtral
|
|
- local: model_doc/mluke
|
|
title: mLUKE
|
|
- local: model_doc/mobilebert
|
|
title: MobileBERT
|
|
- local: model_doc/modernbert
|
|
title: ModernBert
|
|
- local: model_doc/moonshine
|
|
title: moonshine
|
|
- local: model_doc/mpnet
|
|
title: MPNet
|
|
- local: model_doc/mpt
|
|
title: MPT
|
|
- local: model_doc/mra
|
|
title: MRA
|
|
- local: model_doc/mt5
|
|
title: MT5
|
|
- local: model_doc/mvp
|
|
title: MVP
|
|
- local: model_doc/myt5
|
|
title: myt5
|
|
- local: model_doc/nemotron
|
|
title: Nemotron
|
|
- local: model_doc/nezha
|
|
title: NEZHA
|
|
- local: model_doc/nllb
|
|
title: NLLB
|
|
- local: model_doc/nllb-moe
|
|
title: NLLB-MoE
|
|
- local: model_doc/nystromformer
|
|
title: Nyströmformer
|
|
- local: model_doc/olmo
|
|
title: OLMo
|
|
- local: model_doc/olmo2
|
|
title: OLMo2
|
|
- local: model_doc/olmoe
|
|
title: OLMoE
|
|
- local: model_doc/open-llama
|
|
title: Open-Llama
|
|
- local: model_doc/opt
|
|
title: OPT
|
|
- local: model_doc/pegasus
|
|
title: Pegasus
|
|
- local: model_doc/pegasus_x
|
|
title: PEGASUS-X
|
|
- local: model_doc/persimmon
|
|
title: Persimmon
|
|
- local: model_doc/phi
|
|
title: Phi
|
|
- local: model_doc/phi3
|
|
title: Phi-3
|
|
- local: model_doc/phimoe
|
|
title: PhiMoE
|
|
- local: model_doc/phobert
|
|
title: PhoBERT
|
|
- local: model_doc/plbart
|
|
title: PLBart
|
|
- local: model_doc/prophetnet
|
|
title: ProphetNet
|
|
- local: model_doc/qdqbert
|
|
title: QDQBert
|
|
- local: model_doc/qwen2
|
|
title: Qwen2
|
|
- local: model_doc/qwen2_moe
|
|
title: Qwen2MoE
|
|
- local: model_doc/rag
|
|
title: RAG
|
|
- local: model_doc/realm
|
|
title: REALM
|
|
- local: model_doc/recurrent_gemma
|
|
title: RecurrentGemma
|
|
- local: model_doc/reformer
|
|
title: Reformer
|
|
- local: model_doc/rembert
|
|
title: RemBERT
|
|
- local: model_doc/retribert
|
|
title: RetriBERT
|
|
- local: model_doc/roberta
|
|
title: RoBERTa
|
|
- local: model_doc/roberta-prelayernorm
|
|
title: RoBERTa-PreLayerNorm
|
|
- local: model_doc/roc_bert
|
|
title: RoCBert
|
|
- local: model_doc/roformer
|
|
title: RoFormer
|
|
- local: model_doc/rwkv
|
|
title: RWKV
|
|
- local: model_doc/splinter
|
|
title: Splinter
|
|
- local: model_doc/squeezebert
|
|
title: SqueezeBERT
|
|
- local: model_doc/stablelm
|
|
title: StableLm
|
|
- local: model_doc/starcoder2
|
|
title: Starcoder2
|
|
- local: model_doc/switch_transformers
|
|
title: SwitchTransformers
|
|
- local: model_doc/t5
|
|
title: T5
|
|
- local: model_doc/t5v1.1
|
|
title: T5v1.1
|
|
- local: model_doc/tapex
|
|
title: TAPEX
|
|
- local: model_doc/transfo-xl
|
|
title: Transformer XL
|
|
- local: model_doc/ul2
|
|
title: UL2
|
|
- local: model_doc/umt5
|
|
title: UMT5
|
|
- local: model_doc/xmod
|
|
title: X-MOD
|
|
- local: model_doc/xglm
|
|
title: XGLM
|
|
- local: model_doc/xlm
|
|
title: XLM
|
|
- local: model_doc/xlm-prophetnet
|
|
title: XLM-ProphetNet
|
|
- local: model_doc/xlm-roberta
|
|
title: XLM-RoBERTa
|
|
- local: model_doc/xlm-roberta-xl
|
|
title: XLM-RoBERTa-XL
|
|
- local: model_doc/xlm-v
|
|
title: XLM-V
|
|
- local: model_doc/xlnet
|
|
title: XLNet
|
|
- local: model_doc/yoso
|
|
title: YOSO
|
|
- local: model_doc/zamba
|
|
title: Zamba
|
|
title: Text models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/beit
|
|
title: BEiT
|
|
- local: model_doc/bit
|
|
title: BiT
|
|
- local: model_doc/conditional_detr
|
|
title: Conditional DETR
|
|
- local: model_doc/convnext
|
|
title: ConvNeXT
|
|
- local: model_doc/convnextv2
|
|
title: ConvNeXTV2
|
|
- local: model_doc/cvt
|
|
title: CvT
|
|
- local: model_doc/deformable_detr
|
|
title: Deformable DETR
|
|
- local: model_doc/deit
|
|
title: DeiT
|
|
- local: model_doc/depth_anything
|
|
title: Depth Anything
|
|
- local: model_doc/depth_anything_v2
|
|
title: Depth Anything V2
|
|
- local: model_doc/deta
|
|
title: DETA
|
|
- local: model_doc/detr
|
|
title: DETR
|
|
- local: model_doc/dinat
|
|
title: DiNAT
|
|
- local: model_doc/dinov2
|
|
title: DINOV2
|
|
- local: model_doc/dinov2_with_registers
|
|
title: DINOv2 with Registers
|
|
- local: model_doc/dit
|
|
title: DiT
|
|
- local: model_doc/dpt
|
|
title: DPT
|
|
- local: model_doc/efficientformer
|
|
title: EfficientFormer
|
|
- local: model_doc/efficientnet
|
|
title: EfficientNet
|
|
- local: model_doc/focalnet
|
|
title: FocalNet
|
|
- local: model_doc/glpn
|
|
title: GLPN
|
|
- local: model_doc/hiera
|
|
title: Hiera
|
|
- local: model_doc/ijepa
|
|
title: I-JEPA
|
|
- local: model_doc/imagegpt
|
|
title: ImageGPT
|
|
- local: model_doc/levit
|
|
title: LeViT
|
|
- local: model_doc/mask2former
|
|
title: Mask2Former
|
|
- local: model_doc/maskformer
|
|
title: MaskFormer
|
|
- local: model_doc/mobilenet_v1
|
|
title: MobileNetV1
|
|
- local: model_doc/mobilenet_v2
|
|
title: MobileNetV2
|
|
- local: model_doc/mobilevit
|
|
title: MobileViT
|
|
- local: model_doc/mobilevitv2
|
|
title: MobileViTV2
|
|
- local: model_doc/nat
|
|
title: NAT
|
|
- local: model_doc/poolformer
|
|
title: PoolFormer
|
|
- local: model_doc/pvt
|
|
title: Pyramid Vision Transformer (PVT)
|
|
- local: model_doc/pvt_v2
|
|
title: Pyramid Vision Transformer v2 (PVTv2)
|
|
- local: model_doc/regnet
|
|
title: RegNet
|
|
- local: model_doc/resnet
|
|
title: ResNet
|
|
- local: model_doc/rt_detr
|
|
title: RT-DETR
|
|
- local: model_doc/segformer
|
|
title: SegFormer
|
|
- local: model_doc/seggpt
|
|
title: SegGpt
|
|
- local: model_doc/superglue
|
|
title: SuperGlue
|
|
- local: model_doc/superpoint
|
|
title: SuperPoint
|
|
- local: model_doc/swiftformer
|
|
title: SwiftFormer
|
|
- local: model_doc/swin
|
|
title: Swin Transformer
|
|
- local: model_doc/swinv2
|
|
title: Swin Transformer V2
|
|
- local: model_doc/swin2sr
|
|
title: Swin2SR
|
|
- local: model_doc/table-transformer
|
|
title: Table Transformer
|
|
- local: model_doc/textnet
|
|
title: TextNet
|
|
- local: model_doc/timm_wrapper
|
|
title: Timm Wrapper
|
|
- local: model_doc/upernet
|
|
title: UperNet
|
|
- local: model_doc/van
|
|
title: VAN
|
|
- local: model_doc/vit
|
|
title: Vision Transformer (ViT)
|
|
- local: model_doc/vit_hybrid
|
|
title: ViT Hybrid
|
|
- local: model_doc/vitdet
|
|
title: ViTDet
|
|
- local: model_doc/vit_mae
|
|
title: ViTMAE
|
|
- local: model_doc/vitmatte
|
|
title: ViTMatte
|
|
- local: model_doc/vit_msn
|
|
title: ViTMSN
|
|
- local: model_doc/vitpose
|
|
title: ViTPose
|
|
- local: model_doc/yolos
|
|
title: YOLOS
|
|
- local: model_doc/zoedepth
|
|
title: ZoeDepth
|
|
title: Vision models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/audio-spectrogram-transformer
|
|
title: Audio Spectrogram Transformer
|
|
- local: model_doc/bark
|
|
title: Bark
|
|
- local: model_doc/clap
|
|
title: CLAP
|
|
- local: model_doc/dac
|
|
title: dac
|
|
- local: model_doc/encodec
|
|
title: EnCodec
|
|
- local: model_doc/hubert
|
|
title: Hubert
|
|
- local: model_doc/mctct
|
|
title: MCTCT
|
|
- local: model_doc/mimi
|
|
title: Mimi
|
|
- local: model_doc/mms
|
|
title: MMS
|
|
- local: model_doc/moshi
|
|
title: Moshi
|
|
- local: model_doc/musicgen
|
|
title: MusicGen
|
|
- local: model_doc/musicgen_melody
|
|
title: MusicGen Melody
|
|
- local: model_doc/pop2piano
|
|
title: Pop2Piano
|
|
- local: model_doc/seamless_m4t
|
|
title: Seamless-M4T
|
|
- local: model_doc/seamless_m4t_v2
|
|
title: SeamlessM4T-v2
|
|
- local: model_doc/sew
|
|
title: SEW
|
|
- local: model_doc/sew-d
|
|
title: SEW-D
|
|
- local: model_doc/speech_to_text
|
|
title: Speech2Text
|
|
- local: model_doc/speech_to_text_2
|
|
title: Speech2Text2
|
|
- local: model_doc/speecht5
|
|
title: SpeechT5
|
|
- local: model_doc/unispeech
|
|
title: UniSpeech
|
|
- local: model_doc/unispeech-sat
|
|
title: UniSpeech-SAT
|
|
- local: model_doc/univnet
|
|
title: UnivNet
|
|
- local: model_doc/vits
|
|
title: VITS
|
|
- local: model_doc/wav2vec2
|
|
title: Wav2Vec2
|
|
- local: model_doc/wav2vec2-bert
|
|
title: Wav2Vec2-BERT
|
|
- local: model_doc/wav2vec2-conformer
|
|
title: Wav2Vec2-Conformer
|
|
- local: model_doc/wav2vec2_phoneme
|
|
title: Wav2Vec2Phoneme
|
|
- local: model_doc/wavlm
|
|
title: WavLM
|
|
- local: model_doc/whisper
|
|
title: Whisper
|
|
- local: model_doc/xls_r
|
|
title: XLS-R
|
|
- local: model_doc/xlsr_wav2vec2
|
|
title: XLSR-Wav2Vec2
|
|
title: Audio models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/timesformer
|
|
title: TimeSformer
|
|
- local: model_doc/videomae
|
|
title: VideoMAE
|
|
- local: model_doc/vivit
|
|
title: ViViT
|
|
title: Video models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/align
|
|
title: ALIGN
|
|
- local: model_doc/altclip
|
|
title: AltCLIP
|
|
- local: model_doc/aria
|
|
title: Aria
|
|
- local: model_doc/blip
|
|
title: BLIP
|
|
- local: model_doc/blip-2
|
|
title: BLIP-2
|
|
- local: model_doc/bridgetower
|
|
title: BridgeTower
|
|
- local: model_doc/bros
|
|
title: BROS
|
|
- local: model_doc/chameleon
|
|
title: Chameleon
|
|
- local: model_doc/chinese_clip
|
|
title: Chinese-CLIP
|
|
- local: model_doc/clip
|
|
title: CLIP
|
|
- local: model_doc/clipseg
|
|
title: CLIPSeg
|
|
- local: model_doc/clvp
|
|
title: CLVP
|
|
- local: model_doc/colpali
|
|
title: ColPali
|
|
- local: model_doc/data2vec
|
|
title: Data2Vec
|
|
- local: model_doc/deplot
|
|
title: DePlot
|
|
- local: model_doc/donut
|
|
title: Donut
|
|
- local: model_doc/emu3
|
|
title: Emu3
|
|
- local: model_doc/flava
|
|
title: FLAVA
|
|
- local: model_doc/git
|
|
title: GIT
|
|
- local: model_doc/grounding-dino
|
|
title: Grounding DINO
|
|
- local: model_doc/groupvit
|
|
title: GroupViT
|
|
- local: model_doc/idefics
|
|
title: IDEFICS
|
|
- local: model_doc/idefics2
|
|
title: Idefics2
|
|
- local: model_doc/idefics3
|
|
title: Idefics3
|
|
- local: model_doc/instructblip
|
|
title: InstructBLIP
|
|
- local: model_doc/instructblipvideo
|
|
title: InstructBlipVideo
|
|
- local: model_doc/kosmos-2
|
|
title: KOSMOS-2
|
|
- local: model_doc/layoutlm
|
|
title: LayoutLM
|
|
- local: model_doc/layoutlmv2
|
|
title: LayoutLMV2
|
|
- local: model_doc/layoutlmv3
|
|
title: LayoutLMV3
|
|
- local: model_doc/layoutxlm
|
|
title: LayoutXLM
|
|
- local: model_doc/lilt
|
|
title: LiLT
|
|
- local: model_doc/llava
|
|
title: Llava
|
|
- local: model_doc/llava_next
|
|
title: LLaVA-NeXT
|
|
- local: model_doc/llava_next_video
|
|
title: LLaVa-NeXT-Video
|
|
- local: model_doc/llava_onevision
|
|
title: LLaVA-Onevision
|
|
- local: model_doc/lxmert
|
|
title: LXMERT
|
|
- local: model_doc/matcha
|
|
title: MatCha
|
|
- local: model_doc/mgp-str
|
|
title: MGP-STR
|
|
- local: model_doc/mllama
|
|
title: mllama
|
|
- local: model_doc/nougat
|
|
title: Nougat
|
|
- local: model_doc/omdet-turbo
|
|
title: OmDet-Turbo
|
|
- local: model_doc/oneformer
|
|
title: OneFormer
|
|
- local: model_doc/owlvit
|
|
title: OWL-ViT
|
|
- local: model_doc/owlv2
|
|
title: OWLv2
|
|
- local: model_doc/paligemma
|
|
title: PaliGemma
|
|
- local: model_doc/perceiver
|
|
title: Perceiver
|
|
- local: model_doc/pix2struct
|
|
title: Pix2Struct
|
|
- local: model_doc/pixtral
|
|
title: Pixtral
|
|
- local: model_doc/qwen2_audio
|
|
title: Qwen2Audio
|
|
- local: model_doc/qwen2_vl
|
|
title: Qwen2VL
|
|
- local: model_doc/sam
|
|
title: Segment Anything
|
|
- local: model_doc/siglip
|
|
title: SigLIP
|
|
- local: model_doc/speech-encoder-decoder
|
|
title: Speech Encoder Decoder Models
|
|
- local: model_doc/tapas
|
|
title: TAPAS
|
|
- local: model_doc/trocr
|
|
title: TrOCR
|
|
- local: model_doc/tvlt
|
|
title: TVLT
|
|
- local: model_doc/tvp
|
|
title: TVP
|
|
- local: model_doc/udop
|
|
title: UDOP
|
|
- local: model_doc/video_llava
|
|
title: VideoLlava
|
|
- local: model_doc/vilt
|
|
title: ViLT
|
|
- local: model_doc/vipllava
|
|
title: VipLlava
|
|
- local: model_doc/vision-encoder-decoder
|
|
title: Vision Encoder Decoder Models
|
|
- local: model_doc/vision-text-dual-encoder
|
|
title: Vision Text Dual Encoder
|
|
- local: model_doc/visual_bert
|
|
title: VisualBERT
|
|
- local: model_doc/xclip
|
|
title: X-CLIP
|
|
title: Multimodal models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/decision_transformer
|
|
title: Decision Transformer
|
|
- local: model_doc/trajectory_transformer
|
|
title: Trajectory Transformer
|
|
title: Reinforcement learning models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/autoformer
|
|
title: Autoformer
|
|
- local: model_doc/informer
|
|
title: Informer
|
|
- local: model_doc/patchtsmixer
|
|
title: PatchTSMixer
|
|
- local: model_doc/patchtst
|
|
title: PatchTST
|
|
- local: model_doc/time_series_transformer
|
|
title: Time Series Transformer
|
|
title: Time series models
|
|
- isExpanded: false
|
|
sections:
|
|
- local: model_doc/graphormer
|
|
title: Graphormer
|
|
title: Graph models
|
|
title: Models
|
|
- sections:
|
|
- local: internal/modeling_utils
|
|
title: Custom Layers and Utilities
|
|
- local: internal/pipelines_utils
|
|
title: Utilities for pipelines
|
|
- local: internal/tokenization_utils
|
|
title: Utilities for Tokenizers
|
|
- local: internal/trainer_utils
|
|
title: Utilities for Trainer
|
|
- local: internal/generation_utils
|
|
title: Utilities for Generation
|
|
- local: internal/image_processing_utils
|
|
title: Utilities for Image Processors
|
|
- local: internal/audio_utils
|
|
title: Utilities for Audio processing
|
|
- local: internal/file_utils
|
|
title: General Utilities
|
|
- local: internal/time_series_utils
|
|
title: Utilities for Time Series
|
|
title: Internal Helpers
|
|
title: API
|